• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A novel deep learning framework for automatic scoring of PD-L1 expression in non-small cell lung cancer.

    Thumbnail
    View/Open
    12056-Article text-65413-97440-10-20250318.pdf (3.975Mb)
    Date
    2025-03-03
    Author
    Kabir, Saidul
    Chowdhury, Muhammad E H
    Sarmun, Rusab
    Vranić, Semir
    Al Saady, Rafif Mahmood
    Rose, Inga
    Gatalica, Zoran
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    A critical predictive marker for anti-PD-1/PD-L1 therapy is programmed death-ligand 1 (PD-L1) expression, assessed by immunohistochemistry (IHC). This paper explores a novel automated framework using deep learning to accurately evaluate PD-L1 expression from whole slide images (WSIs) of non-small cell lung cancer (NSCLC), aiming to improve the precision and consistency of Tumor Proportion Score (TPS) evaluation, which is essential for determining patient eligibility for immunotherapy. Automating TPS evaluation can enhance accuracy and consistency while reducing pathologists' workload. The proposed automated framework encompasses three stages: identifying tumor patches, segmenting tumor areas, and detecting cell nuclei within these areas, followed by estimating the TPS based on the ratio of positively stained to total viable tumor cells. This study utilized a Reference Medicine (Phoenix, Arizona) dataset containing 66 NSCLC tissue samples, adopting a hybrid human-machine approach for annotating extensive WSIs. Patches of size 1000x1000 pixels were generated to train classification models such as EfficientNet, Inception, and Vision Transformer models. Additionally, segmentation performance was evaluated across various UNet and DeepLabV3 architectures, and the pre-trained StarDist model was employed for nuclei detection, replacing traditional watershed techniques. PD-L1 expression was categorized into three levels based on TPS: negative expression (TPS < 1%), low expression (TPS 1-49%), and high expression (TPS ≥ 50%). The Vision Transformer-based model excelled in classification, achieving an F1-score of 97.54%, while the modified DeepLabV3+ model led in segmentation, attaining a Dice Similarity Coefficient of 83.47%. The TPS predicted by the framework closely correlated with the pathologist's TPS at 0.9635, and the framework's three-level classification F1-score was 93.89%. The proposed deep learning framework for automatically evaluating the TPS of PD-L1 expression in NSCLC demonstrated promising performance. This framework presents a potential tool that could produce clinically significant results more efficiently and cost-effectively.
    DOI/handle
    http://dx.doi.org/10.17305/bb.2025.12056
    http://hdl.handle.net/10576/63959
    Collections
    • Electrical Engineering [‎2821‎ items ]
    • Medicine Research [‎1759‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video