عرض بسيط للتسجيلة

المؤلفHassan, Iqbal
المؤلفZolezzi, Monica
المؤلفKhalil, Hanan
المؤلفMahmood Al Saady, Rafif
المؤلفPedersen, Shona
المؤلفChowdhury, Muhammad E. H.
تاريخ الإتاحة2025-04-16T06:32:17Z
تاريخ النشر2024
اسم المنشورIEEE Access
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/ACCESS.2024.3428691
الرقم المعياري الدولي للكتاب21693536
معرّف المصادر الموحدhttp://hdl.handle.net/10576/64226
الملخصThe increasing prevalence of non-invasive, portable Electroencephalography (EEG) sensors for neuro-physiological measurements has propelled EEG-based assessments of cognitive load (CL) into the spotlight. In this study, we harnessed the capabilities of a four-channel, wearable EEG device that captured brain activity data during two distinct CL states: Baseline (representing a non-CL, resting state) and the Stroop Test (a CL-inducing state). The primary objective of this study is to estimate the CL index through an innovative approach that employs a hybrid, cluster-based, unsupervised learning technique seamlessly integrated with a 1D Convolutional Neural Network (CNN) architecture tailored for automated feature extraction, rather than conventional supervised algorithms, which facilitated in the acquisition of latent complex patterns without the need for manual categorization. The approach was rigorously evaluated using stratified cross-validation, with several assessment criteria assessing both its quality and predictive capability to estimate the CL index. The results obtained (e.g., homogeneity score of 0.7, adjusted rand index of 0.78, silhouette coefficient of 0.5, and an accuracy rate of 93.2%) demonstrate that our module exhibits superiority over supervised approaches. These results are indicative that the adoption of multi-channel wearable EEG devices may facilitate real-time CL estimation, minimizing the need for extensive human intervention, and reducing potential bias, paving the way for more objective and efficient CL assessments.
راعي المشروعThis work was supported by the VP grant of the Health cluster of Qatar University. The open-access publication is supported by the Qatar National Library.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعbrain-computer interface (BCI)
Cognitive load
electroencephalography (EEG)
unsupervised machine learning
العنوانCognitive Load Estimation Using a Hybrid Cluster-Based Unsupervised Machine Learning Technique
النوعArticle
الصفحات118785-118801
رقم المجلد12
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة