• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Engineered Anti-Microbial Peptides Inhibit Cell Viability, Promote Apoptosis, and Induce Cell Cycle Arrest in SW620 Human Colon Adenocarcinoma Cells.

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2025-02-11
    Author
    Hashem, Sheema
    Bhat, Ajaz A
    Nisar, Sabah
    Uddin, Shahab
    Merhi, Maysaloun
    Mateo, Jericha M
    Prabhu, Kirti S
    Soubra, Lama
    Dos Santos Silva, Carlos André
    Benko-Iseppon, Ana Maria
    Vilela, Lívia Maria Batista
    de Lima, Marx Oliveira
    da Silva, Juliana Georgia
    Haris, Mohammad
    Suleman, Muhammad
    Crovella, Sergio
    Abou Saleh, Haissam
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Colorectal cancer (CRC) is one of the most common malignancies worldwide, and despite advances in treatment, there remains a critical need for novel therapeutic approaches. Recently, anti-microbial peptides (AMPs) have gained attention for their potential use in cancer therapy due to their selective cytotoxicity towards cancer cells. This study aims to evaluate the anti-cancer potential of two computationally engineered anti-microbial peptides (EAMPs) in SW620, SW480, and HCT116 colon cancer cells and the normal colon epithelial cell line CCD 841, focusing on their effects on cell proliferation, apoptosis, and DNA damage. Cell proliferation and survival were measured using the CellTiter-Glo Luminescence and clonogenic assays. DNA damage was assessed through the Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Flow cytometry was used to examine cell apoptosis, cell cycle distribution, and mitochondrial membrane potential in SW620 cells. EAMPs inhibited CRC cell proliferation in a dose-dependent manner, with minimal toxicity observed in normal colon epithelial cells. In SW620 cells, EAMPs induced DNA damage, resulting in cell cycle arrest at the S/G2 phase, apoptosis, and a reduction in mitochondrial membrane potential. The proliferation results were confirmed in SW480 and HCT116 CRC cell lines. Our findings revealed that EAMPs exhibited significant anti-cancer activity against CRC cells in vitro while sparing normal epithelial cells. These results suggest that EAMPs may offer a potential therapeutic approach for colorectal cancer and warrant further investigation.
    DOI/handle
    http://hdl.handle.net/10576/64457
    Collections
    • Biological & Environmental Sciences [‎931‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video