• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Microneedle Delivery of Heterologous Microparticulate COVID-19 Vaccine Induces Cross Strain Specific Antibody Levels in Mice

    Thumbnail
    View/Open
    vaccines-13-00380-with-cover.pdf (1.794Mb)
    Date
    2025-04-01
    Author
    Arte, Tanisha Manoj
    Patil, Smital Rajan
    Adediran, Emmanuel
    Singh, Revanth
    Bagwe, Priyal
    Gulani, Mahek Anil
    Pasupuleti, Dedeepya
    Ferguson, Amarae
    Zughaier, Susu M.
    D’Souza, Martin J.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Background: In recent years, the COVID-19 pandemic has significantly impacted global health, largely driven by the emergence of various genetic mutations within the SARS-CoV-2 virus. Although the pandemic phase has passed, the full extent of the virus’s evolutionary trajectory remains uncertain, highlighting the need for continued research in vaccine development to establish a cross-reactive approach that can effectively address different variants. This proof-of-concept study aimed to assess the effectiveness of microparticulate vaccine delivery through the minimally invasive microneedle route of administration, using a heterologous prime–booster strategy against the SARS-CoV-2 virus. Method: This strategy uses the whole inactivated virus of the Delta variant for the prime dose and the whole inactivated virus of the Omicron variant for the booster dose, with alum as an adjuvant. The formulation of microparticles involves encapsulating the antigens in poly lactic-co-glycolic acid (PLGA) polymer, which provides sustained release and enhances immunogenicity while protecting the antigen. Microparticles were tested for in vitro assays, and characterization included particle size, zeta potential, and encapsulation efficacy. Furthermore, serum was collected post-administration of the vaccine in mice and was tested for antibody levels. Result: In vitro assays confirmed the non-cytotoxicity and the ability of microparticles to activate the immune response of the vaccine particles. Administering this microparticulate vaccine via microneedles has proven effective for delivering vaccines through the skin. We also observed significantly higher antigen-specific antibody levels and cross-reactivity in the strains. Conclusions: Our adjuvanted microparticulate-based heterologous prime–booster vaccine strategy showed cross-reactivity among the strains and was successfully delivered using microneedles.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105003681890&origin=inward
    DOI/handle
    http://dx.doi.org/10.3390/vaccines13040380
    http://hdl.handle.net/10576/65625
    Collections
    • Medicine Research [‎1819‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video