• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Laboratory Animal Research Center
  • Laboratory Animal Research Center (Research)
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Laboratory Animal Research Center
  • Laboratory Animal Research Center (Research)
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Near-infrared photobiomodulation therapy on HD10.6 human sensory neurons cell culture

    View/Open
    s10103-024-04266-x.pdf (1.338Mb)
    Date
    2025
    Author
    Zupin, Luisa
    Whitford, Abigail L.
    Cliffe, Anna R.
    Crovella, Sergio
    Barbi, Egidio
    Celsi, Fulvio
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    PURPOSE: We investigated the molecular effects of near-infrared photobiomodulation therapy (PBMT) on HD10.6 human sensory neuron cell cultures. This study explores the utility of PBMT in modulating the functionality of sensory neurons in vitro with a potential translational effect on analgesia, a significant concern in clinical settings, particularly in pediatrics where non-invasive treatments are crucial. METHODS: HD10.6 human sensory neuron cell model was employed in the study. The 800 and 970 PBMT was tested on the cells and mitochondria related parameters and TRP channel functionality were evaluated after irradiation. RESULTS: We found that PBMT affects mitochondrial dynamics and reduces oxidative stress, influenced calcium ion flow, pivotal in nociception signaling, and modified the expression of TRPV1 and TRPA1 receptors post-irradiation. CONCLUSIONS: This study observed a potential impact of PBMT on sensory neurons through various cellular mechanisms. These findings may contribute to the understanding of PBMT's mechanistic effects on human sensory neurons, not yet explored in in-vitro model, pointing to its potential utility as a supportive treatment for non-invasive pain management in pediatric care.
    DOI/handle
    http://dx.doi.org/10.1007/s10103-024-04266-x
    http://hdl.handle.net/10576/68497
    Collections
    • Laboratory Animal Research Center (Research) [‎152‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video