• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Wide area monitoring system operations in modern power grids: A median regression function-based state estimation approach towards cyber attacks

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2352467723000176-main.pdf (2.339Mb)
    Date
    2023
    Author
    Khalid, Haris M.
    Flitti, Farid
    Mahmoud, Magdi S.
    Hamdan, Mutaz M.
    Muyeen, S.M.
    Dong, Zhao Yang
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Modern power grid is a generation mix of conventional generation facilities and variable renewable energy resources (VRES). The complexity of such a power grid with generation mix has routed the utilization of infrastructures involving phasor measurement units (PMUs). This is to have access to real-time grid information. However, the traffic of digital information and communication is potentially vulnerable to data-injection and cyber attacks. To address this issue, a median regression function (MRF)-based state estimation is presented in this paper. The algorithm was stationed at each monitoring node using interacting multiple model (IMM)-based fusion architecture. An exogenous variable-driven representation of the state is considered for the system. A mapping function-based initial regression analysis is made to depict the margins of state estimate in the presence of data-injection. A median regression function is built on top of it while generating and evaluating the residuals. The tests were conducted on a revisited New England 39-Bus system with large scale photovoltaic (PV) power plant. The system was affected with multiple system disturbances and severe data-injection attacks. The results show the effectiveness of the proposed MRF method against the mainstream and regression methods. The proposed scheme can accurately estimate the states and evaluate the contaminated measurements while improving the situation awareness of wide area monitoring systems (WAMS) operations in modern power grids 2023 The Author(s)
    DOI/handle
    http://dx.doi.org/10.1016/j.segan.2023.101009
    http://hdl.handle.net/10576/40356
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video