• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On the protection of power system: Transmission line fault analysis based on an optimal machine learning approach

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2352484722014287-main.pdf (3.762Mb)
    Date
    2022
    Author
    Uddin, Md. Sihab
    Hossain, Md. Zahid
    Fahim, Shahriar Rahman
    Sarker, Subrata K.
    Bhuiyan, Erphan Ahmmad
    Muyeen, S.M.
    Das, Sajal K.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Transmission lines (TLs) of power networks are often encountered with a number of faults. To continue normal operation and reduce the damage due to the TL faults, it is a must to identify and classify faults as early as possible. In this paper, the design and development of an intelligent machine learning framework is presented to identify and classify faults in a power TL. The design of the proposed framework is done with the goal of reducing computational load and ensuring resilience against source noise, source impedance, fault strength, and sampling frequency variation. The design is carried out based on the selection of the optimal model parameters using a search optimization algorithm called GridSearchCV. The effectiveness of the proposed model is verified by testing the model on the IEC standard microgrid model in a MATLAB environment. The results show that the proposed model has more than ninety-nine per cent overall accuracy in the identification and classification of the TL faults. The results are also compared with some state-of-the-art approaches such as LSTM, RNN, DBN, DRL, and CNF to further examine the performance of the proposed framework. The comparison demonstrates that the proposed model outperforms other existing techniques in terms of accuracy, computational cost, and response speed. 2022 The Authors
    DOI/handle
    http://dx.doi.org/10.1016/j.egyr.2022.07.163
    http://hdl.handle.net/10576/40379
    Collections
    • Electrical Engineering [‎2822‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video