• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Blind ECG Restoration by Operational Cycle-GANs

    Thumbnail
    View/Open
    Blind_ECG_Restoration_by_Operational_Cycle-GANs.pdf (3.910Mb)
    Blind_ECG_Restoration_by_Operational_Cycle-GANs.pdf (3.910Mb)
    Date
    2022
    Author
    Kiranyaz, Serkan
    Devecioglu, Ozer Can
    Ince, Turker
    Malik, Junaid
    Chowdhury, Muhammad
    Hamid, Tahir
    Mazhar, Rashid
    Khandakar, Amith
    Tahir, Anas
    Rahman, Tawsifur
    Gabbouj, Moncef
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Objective: ECG recordings often suffer from a set of artifacts with varying types, severities, and durations, and this makes an accurate diagnosis by machines or medical doctors difficult and unreliable. Numerous studies have proposed ECG denoising; however, they naturally fail to restore the actual ECG signal corrupted with such artifacts due to their simple and naive noise model. In this pilot study, we propose a novel approach for blind ECG restoration using cycle-consistent generative adversarial networks (Cycle-GANs) where the quality of the signal can be improved to a clinical level ECG regardless of the type and severity of the artifacts corrupting the signal. Methods: To further boost the restoration performance, we propose 1D operational Cycle-GANs with the generative neuron model. Results: The proposed approach has been evaluated extensively using one of the largest benchmark ECG datasets from the China Physiological Signal Challenge (CPSC-2020) with more than one million beats. Besides the quantitative and qualitative evaluations, a group of cardiologists performed medical evaluations to validate the quality and usability of the restored ECG, especially for an accurate arrhythmia diagnosis. Significance: As a pioneer study in ECG restoration, the corrupted ECG signals can be restored to clinical level quality. Conclusion: By means of the proposed ECG restoration, the ECG diagnosis accuracy and performance can significantly improve. 1964-2012 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/TBME.2022.3172125
    http://hdl.handle.net/10576/41934
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video