• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Review of Biomaterials and Associated Performance Metrics Analysis in Pre-Clinical Finite Element Model and in Implementation Stages for Total Hip Implant System

    Thumbnail
    View/Open
    polymers-14-04308.pdf (3.423Mb)
    Date
    2022
    Author
    Soliman, Md M.
    Chowdhury, Muhammad E. H.
    Islam, Mohammad T.
    Musharavati, Farayi
    Nabil, Mohammad
    Hafizh, Muhammad
    Khandakar, Amith
    Mahmud, Sakib
    Nezhad, Erfan Z.
    Shuzan, Md N.
    Abir, Farhan F.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Total hip replacement (THR) is a common orthopedic surgery technique that helps thousands of individuals to live normal lives each year. A hip replacement replaces the shattered cartilage and bone with an implant. Most hip implants fail after 10-15 years. The material selection for the total hip implant systems is a major research field since it affects the mechanical and clinical performance of it. Stress shielding due to excessive contact stress, implant dislocation due to a large deformation, aseptic implant loosening due to the particle propagation of wear debris, decreased bone remodeling density due to the stress shielding, and adverse tissue responses due to material wear debris all contribute to the failure of hip implants. Recent research shows that pre-clinical computational finite element analysis (FEA) can be used to estimate four mechanical performance parameters of hip implants which are connected with distinct biomaterials: von Mises stress and deformation, micromotion, wear estimates, and implant fatigue. In vitro, in vivo, and clinical stages are utilized to determine the hip implant biocompatibility and the unfavorable local tissue reactions to different biomaterials during the implementation phase. This research summarizes and analyses the performance of the different biomaterials that are employed in total hip implant systems in the pre-clinical stage using FEA, as well as their performances in in vitro, in vivo, and in clinical studies, which will help researchers in gaining a better understanding of the prospects and challenges in this field. 2022 by the authors.
    DOI/handle
    http://dx.doi.org/10.3390/polym14204308
    http://hdl.handle.net/10576/41940
    Collections
    • Electrical Engineering [‎2821‎ items ]
    • Mechanical & Industrial Engineering [‎1460‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video