• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Implication of salt stress induces changes in pigment production, antioxidant enzyme activity, and qRT-PCR expression of genes involved in the biosynthetic pathway of Bixa orellana L.

    Thumbnail
    Date
    2019-01-01
    Author
    Sankari, M
    Hridya, H
    Sneha, P
    Doss, C George Priya
    Christopher, J Godwin
    Mathew, Jill
    Zayed, Hatem
    Ramamoorthy, Siva
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The effect of salt stress on pigment synthesis and antioxidant enzyme activity as well as in the genes involved in the biosynthetic pathway of bixin was studied. The 14-day germinated seedlings of Bixa orellana were induced into the various NaCl concentration (0, 25, 50, 75, 100 mM). After 45 days, leaves were taken for pigment analysis, antioxidant assays, and gene expression analysis to study the response of salt stress. The pigment content such as chlorophyll level was increased upon salt stress with a reduction in total carotenoid clearly indicating the adaptability of plants towards the stressed state. The level of β-carotene was increased in the highest concentration of salt stress treatment. The secondary metabolites such as bixin and abscisic acid (ABA) content were also high in elevated concentration of salt-treated seedling than control. The antioxidant enzyme activity was increased with the highest dose of salt stress suggesting the antioxidant enzymes to protect the plant from the deleterious effects. The mRNA transcript gene of the carotenoid biosynthetic pathway such as phytoene synthase (PSY), 1-deoxyxylulose-5-phosphate synthase (DXS), phytoene desaturase (PDS), beta-lycopene cyclase (LCY-β), epsilon lycopene cyclase (LCY-ε), carboxyl methyl transferase (CMT), aldehyde dehydrogenase (ADH), lycopene cleavage dioxygenase (LCD), and carotenoid cleavage dioxygenase (CCD) showed differential expression pattern under salt stress. In addendum, we studied the co-expression network analysis of gene to assess the co-related genes associated in the biosynthesis pathway of carotenoid. From the co-expression analysis result showed, the LCY, PDS, and PSY genes were closely correlated with other genes. These finding may provide insight to the plants to exist in the stress condition and to improve the industrially important pigment production.
    DOI/handle
    http://dx.doi.org/10.1007/s10142-019-00654-7
    http://hdl.handle.net/10576/11296
    Collections
    • Biomedical Sciences [‎832‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video