• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    “Safe” Chitosan Zinc Oxide Nanocomposite Has Minimal Organ-Specific Toxicity on Early Stages of Zebrafish Development

    Thumbnail
    Date
    2019-02-22
    Author
    Younes, Nadin
    Pintus, Gianfranco
    Al-Asmakh, Maha
    Rasool, Kashif
    Younes, Salma
    Calzolari, Simone
    Mahmoud, Khaled
    Nasrallah, Gheyath
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Marine biofouling is considered one of the most challenging issues affecting maritime industries worldwide. In this regard, traditional biocides, being used to combat biofouling, have high toxicity toward the aquatic system. Recently, a new chitosan/zinc oxide nanoparticle (CZNCs) composite has been used as promising “green” biocides. It is thought that due to the eco-friendly nature of chitosan, our newly synthesized CZNCs may pave the way to develop less toxic surfaces for combating marine fouling. Zebrafish has become one of the most employed models for ecotoxicology studies. Therefore, this study aims to comprehensively evaluate any potential acute, cardio, neuro, or hepatotoxic effect of CZNCs using zebrafish embryos. As evidenced by the acute toxicity assays, exposure of zebrafish embryos to CZNCs (25-200 mg/L) failed to elicit any signs of acute toxicity or mortality, suggesting a hypothetical LC50 higher than the maximum dose employed. CZNCs, at a concentration of 250 mg/L also showed no cardiotoxic or neurotoxic effects. At the same dosage, a minor hepatotoxic effect was observed in zebrafish embryos exposed to CZNCs. However, the observed hepatotoxicity had no effect on embryos survival even after long-term (10-days) exposure to CZNCs. We believe our results add valuable information to the potential toxicity of chitosan-metal oxide nanoparticle-based hybrid nanocomposites, which may provide new insights for the synthesis of ecofriendly coatings with improved antifouling performance and a low adverse impact on marine environment.
    DOI/handle
    http://dx.doi.org/10.1021/acsbiomaterials.8b01144
    http://hdl.handle.net/10576/11368
    Collections
    • Biomedical Research Center Research [‎800‎ items ]
    • Biomedical Sciences [‎819‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video