• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Civil Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Civil Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Travel Time Prediction Model For Public Transport Buses In Qatar Using Artificial Neural Networks

    Thumbnail
    View/Open
    MotasemMeqdad_OGSApprovedThesis.pdf (2.149Mb)
    Date
    2018-01
    Author
    Meqdad, Motasem K.
    Metadata
    Show full item record
    Abstract
    The state of Qatar has experienced rapid population growth over the last few years. This growth of population has caused authorities to promote the use of public transportation, by introducing new public transport systems such as transit buses and metro lines. The existing bus system was introduced in 2004 to the local community in Qatar. Despite the importance of this system, there are limited studies that are done to analyze and identify its characteristics. There is not much analysis of the stop-to-stop travel time or schedule reliability. The objective of this research is to develop a prediction model for transit route travel time. The model can predict the travel time of buses using several independent variables that are different for each transit route. The prediction model can be used as a useful tool to the decision makers and public transport officials, which can be used for planning, system reliability and quality control, and real-time advanced travelers’ information systems. The data was collected for 12 routes over a period of one year (2015-2016) within The Greater City of Doha using Automatic Vehicle Location (AVL) system. Transit travel time data was obtained from Mowasalat records, the sole operator of public transport buses in Qatar. The collected data include travel time data, route information, geometric configurations, land use, and traffic data. After systematic checking of errors in the collected data and elimination of irreverent records, more than 78,004 trips were analyzed using Artificial Neural Networks (ANN) data mining technique. Prediction model, with R2 of 0.95 was developed. The results indicate that the developed model is accurate and reliable in predicting the travel time. The model can be generalized as well to be applied to newly planned routes, or updating the schedules of existing routes.
    DOI/handle
    http://hdl.handle.net/10576/11829
    Collections
    • Civil Engineering [‎55‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video