عرض بسيط للتسجيلة

المؤلفDoi, Suhail A R
المؤلفFuruya-Kanamori, Luis
تاريخ الإتاحة2019-12-15T05:04:39Z
تاريخ النشر2019-12-01
اسم المنشورInternational Journal of Evidence-Based Healthcareen_US
المعرّفhttp://dx.doi.org/10.1097/XEB.0000000000000207
الاقتباسDoi, Suhail A.R. & Furuya-Kanamori, Luis. "Selecting the best meta-analytic estimator for evidence-based practice: a simulation study" International Journal of Evidence-Based Healthcare.
الرقم المعياري الدولي للكتاب1744-1595
المعرّفPMID: 31764215
معرّف المصادر الموحدhttp://hdl.handle.net/10576/12397
الملخصStudies included in meta-analysis can produce results that depart from the true population parameter of interest due to systematic and/or random errors. Synthesis of these results in meta-analysis aims to generate an estimate closer to the true population parameter by minimizing these errors across studies. The inverse variance heterogeneity (IVhet), quality effects and random effects models of meta-analysis all attempt to do this, but there remains controversy around the estimator that best achieves this goal of reducing error. In an attempt to answer this question, a simulation study was conducted to compare estimator performance. Five thousand iterations at 10 different levels of heterogeneity were run, with each iteration generating one meta-analysis. The results demonstrate that the IVhet and quality effects estimators, though biased, have the lowest mean squared error. These estimators also achieved a coverage probability at or above the nominal level (95%), whereas the coverage probability under the random effects estimator significantly declined (<80%) as heterogeneity increased despite a similar confidence interval width. Based on our findings, we would recommend the use of the IVhet and quality effects models and a discontinuation of traditional random effects models currently in use for meta-analysis.
اللغةen
الناشرLippincott, Williams & Wilkins
الموضوعmeta-analysis
الموضوعcomparison of models
الموضوعsimulation
الموضوعIVhet
الموضوعQE
الموضوعRE
العنوانSelecting the best meta-analytic estimator for evidence-based practice: a simulation study.
النوعArticle
ESSN1744-1609


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة