• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    New electrospun polystyrene/Al2O3 nanocomposite superhydrophobic coatings; Synthesis, characterization, and application

    Thumbnail
    View/Open
    New Electrospun PolystyreneAl2O3 Nanocomposite Superhydrophobic Coatings; Synthesis, Characterization, and Application.pdf (2.543Mb)
    Date
    2018
    Author
    Radwan A.B.
    Abdullah A.M.
    Mohamed A.M.A.
    Al-Maadeed M.A.
    Metadata
    Show full item record
    Abstract
    The effect of electrospinning operational parameters on the morphology, surface roughness, and wettability of different compositions of electrospun polystyrene (PS)-aluminum oxide (Al2O3) nanocomposite coatings was investigated using different techniques. For example, a scanning electron microscope (SEM) coupled with an energy dispersive X-ray (EDX) unit, a Fourier transform infrared (FTIR) spectrometer, an atomic force microscope (AFM), and water contact angle (WCA), and contact angle hysteresis (CAH) measurements using the sessile droplet method, were used. The latter used 4 μL of distilled water at room temperature. PS/Al2O3 nanocomposite coatings exhibited different morphologies, such as beaded fibers and microfibers, depending on the concentration ratio between the PS and Al2O3 nanoparticles and the operational parameters of the electrospinning process. The optimum conditions to produce a nanocomposite coating with the highest roughness and superhydrophobic properties (155° ± 1.9° for WCA and 3° ± 4.2° for CAH) are 2.5 and 0.25 wt % of PS and Al2O3, respectively, 25 kV for the applied potential and 1.5 mL·h-1 for the solution flow rate at 35 °C. The corrosion resistance of the as-prepared coatings was investigated using the electrochemical impedance spectroscopy (EIS) technique. The results have revealed that the highly porous superhydrophobic nanocomposite coatings (SHCs) possess a superior corrosion resistance that is higher than the uncoated Al alloy by three orders of magnitude. © 2018 by the authors.
    DOI/handle
    http://dx.doi.org/10.3390/coatings8020065
    http://hdl.handle.net/10576/12716
    Collections
    • Center for Advanced Materials Research [‎1633‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video