• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    HD number plate localization and character segmentation on the Zynq heterogeneous SoC

    Thumbnail
    Date
    2019
    Author
    Al-Zawqari A.
    Hommos O.
    Al-Qahtani A.
    Farhat A.A.H.
    Bensaali F.
    Zhai X.
    Amira A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Automatic number plate recognition (ANPR) systems have become widely used in safety, security, and commercial aspects. A typical ANPR system consists of three main stages: number plate localization (NPL), character segmentation (CS), and optical character recognition (OCR). In recent years, to provide a better recognition rate, high-definition (HD) cameras have started to be used. However, most known techniques for standard definition (SD) are not suitable for real-time HD image processing due to the computationally intensive cost of processing several-folds more of image pixels, particularly in the NPL stage. In this paper, algorithms suitable for hardware implementation for NPL and CS stages of an HD ANPR system are presented. Software implementation of the algorithms was carried on as a proof of concept, followed by hardware implementation on a heterogeneous system-on-chip (SoC) device that contains an ARM processor and a field-programmable gate array (FPGA). Heterogeneous implementation of these stages has shown that this HD NPL algorithm can localize a number plate in 16.17 ms, with a success rate of 98.0%. The CS algorithm can then segment the detected plate in 0.59 ms, with a success rate of 99.05%. Both stages utilize only 21% of the available on-chip configurable logic blocks.
    DOI/handle
    http://dx.doi.org/10.1007/s11554-017-0747-7
    http://hdl.handle.net/10576/13618
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video