• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Precise fabrication of porous one-dimensional gC3N4 nanotubes doped with Pd and Cu atoms for efficient CO oxidation and CO2 reduction

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Eid K.
    Sliem M.H.
    Jlassi K.
    Eldesoky A.S.
    Abdo G.G.
    Al-Qaradawi S.Y.
    Sharaf M.A.
    Abdullah A.M.
    Elzatahry A.A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Rational design of graphitic carbon nitride nanostructures (gC3N4) is vital for various catalytic applications. Herein, we synthesized porous gC3N4 nanotubes (gC3N4NTs) doped with Pd and Cu (Pd/Cu/gC3N4NTs) via the consecutive polymerization of melamine in an ethylene glycol solution containing the metal precursors followed by annealing. The gC3N4NTs, thus produced, possess a well-defined one-dimensional porous nanotube architecture, large surface area (240 m2 g−1), and a homogenous dispersion of Pd and Cu with no need for templates and/or multistep reactions. This merits the CO oxidation activity of Pd/Cu/gC3N4NTs by 56 °C and 96 °C higher than that of Pd/gC3N4NTs and Cu/gC3N4NTs, respectively. The CO2 reduction activity of Pd/Cu/gC3N4NTs was a 5.5-fold higher than metal-free gC3N4NTs. Also, the UV-light irradiation enhanced the CO2 performance of Pd/Cu/gC3N4NTs by three times. The presented study may pave the way for the utilization of metal-doped gC3N4NTs in various applications.
    DOI/handle
    http://dx.doi.org/10.1016/j.inoche.2019.107460
    http://hdl.handle.net/10576/14362
    Collections
    • Center for Advanced Materials Research [‎1518‎ items ]
    • Chemistry & Earth Sciences [‎608‎ items ]
    • Materials Science & Technology [‎317‎ items ]
    • Pharmacy Research [‎1419‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video