• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Methanol Electro-Oxidation in Alkaline Medium by Ni Based Binary and Ternary Catalysts: Effect of Iron (Fe) on the Catalyst Performance

    Thumbnail
    Date
    2019
    Author
    Nazal M.K.
    Olakunle O.S.
    Al-Ahmed A.
    Sultan A.S.
    Zaidi S.J.
    Metadata
    Show full item record
    Abstract
    Pt free methanol electro oxidation catalysts with stable response are of interest to reduce the overall cost of the direct methanol fuel cell (DMFC). Here, nickel based bi and tri metallic catalysts have been prepared on multiwall carbon nanotube (MWCNT) support by incipient wetness impregnation method. Methanol oxidation performance was investigated in 1 M KOH by cyclic-voltammetry (CV) and chronoamperometry (CA). The results of electrochemical tests showed that among all the catalysts tested, catalyst sample, CAT-3 exhibited the highest current density of 125.5 mA/cm2 and have stable electrochemical response, which is very promising. These catalysts have been characterized by field emission scanning electron microscopy (FESEM) coupled with energy dispersive X-ray-(EDX), transmission electron microscopy (TEM), X-ray diffraction XRD and X-ray photoelectron spectroscopy (XPS) to study the structural and morphological properties. Characterization results revealed small and uniform particle size distribution and better homogeneity in CAT-3. It was also observed that addition of 'Fe' in tri metallic catalyst lowers the Cu contents in the catalysts and in the contrary lowers the electro-catalytic performance. All the catalyst found to be quite stable and CAT-3 gave the highest oxidative current response, which is attributed to higher Cu contents.
    DOI/handle
    http://dx.doi.org/10.1134/S1023193519010099
    http://hdl.handle.net/10576/14462
    Collections
    • Center for Advanced Materials Research [‎1486‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video