• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الطب
  • أبحاث الطب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الطب
  • أبحاث الطب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Biomarker Based Severity Progression Indicator for COVID-19: The Kuwait Prognosis Indicator Score.

    Thumbnail
    التاريخ
    2020-10-01
    المؤلف
    Jamal, Mohammad H
    Doi, Suhail A
    AlYouha, Sarah
    Almazeedi, Sulaiman
    Al-Haddad, Mohannad
    Al-Muhaini, Ali
    Al-Ghimlas, Fahad
    Chowdhury, Muhammad E
    Al-Sabah, D Salman
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    COVID-19 is a worldwide pandemic that is mild in most patients but can result in a pneumonia like illness with progression to acute respiratory distress syndrome and death. Predicting the disease severity at time of diagnosis can be helpful in prioritizing hospital admission and resources. We prospectively recruited 1096 consecutive patients of whom 643 met the inclusion criterion with COVID-19 from Jaber Hospital, a COVID-19 facility in Kuwait, between 24 February and 20 April 2020. The primary endpoint of interest was disease severity defined algorithmically. Predefined risk variables were collected at the time of PCR based diagnosis of the infection. Prognostic model development used 5-fold cross-validated regularized logit regression. The model was externally validated against data from Wuhan, China. There were 643 patients with clinical course data of whom 94 developed severe COVID-19. In the final model, age, CRP, procalcitonin, lymphocyte percentage, monocyte percentages and serum albumin were independent predictors of a more severe illness course. The final prognostic model demonstrated good discrimination, and both discrimination and calibration were confirmed with an external dataset. We developed and validated a simple score calculated at time of diagnosis that can predict patients with severe COVID-19 disease reliably and that has been validated externally. The KPI score calculator is now available online at .
    DOI/handle
    http://dx.doi.org/10.1080/1354750X.2020.1841296
    http://hdl.handle.net/10576/16943
    المجموعات
    • أبحاث فيروس كورونا المستجد (كوفيد-19) [‎853‎ items ]
    • أبحاث الطب [‎1913‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video