Abnormal brain structure and behavior in MyD88-deficient mice.
View/ Open
Publisher version (Check access options)
Check access options
Date
2021-01Author
Schroeder, PatriciaRivalan, Marion
Zaqout, Sami
Krüger, Christina
Schüler, Jutta
Long, Melissa
Meisel, Andreas
Winter, York
Kaindl, Angela M
Lehnardt, Seija
...show more authors ...show less authors
Metadata
Show full item recordAbstract
While the original protein Toll in Drosophila melanogaster regulates both host defense and morphogenesis, the role of its ortholog Toll-like receptors (TLRs), the interleukin 1 receptor (IL-1R) family, and the associated signaling pathways in mammalian brain development and structure is poorly understood. Because the adaptor protein myeloid differentiation primary response protein 88 (MyD88) is essential for downstream signaling of most TLRs and IL-1R, we systematically investigated the effect of MyD88 deficiency on murine brain structure during development and on behavior. In neonatal Myd88 mice, neocortical thickness was reduced, while density of cortical neurons was increased. In contrast, microglia, astrocyte, oligodendrocyte, and proliferating cell numbers were unchanged in these mice compared to wild-type mice. In adult Myd88 mice, neocortical thickness was unaltered, but neuronal density in neocortex and hippocampus was increased. Neuron arborization was less pronounced in adult Myd88 mice compared to wild-type animals. In addition, numbers of microglia and proliferating cells were increased in the neocortex and subventricular zone, respectively, with unaltered astrocyte and oligodendrocyte numbers, and myelinization was enhanced in the adult Myd88 neocortex. These morphologic changes in the brain of adult Myd88 mice were accompanied by specific behavioral traits, such as decreased locomotor activity, increased anxiety-like behavior, but normal day/light activity, satisfactory learning, short- and long-term spatial memory, potential cognitive inflexibility, and increased hanging and locomotor behavior within their home cage. Taken together, MyD88 deficiency results in morphologic and cellular changes in the mouse brain, as well as in altered natural and specific behaviors. Our data indicate a pathophysiological significance of MyD88 for mammalian CNS development, structure, and function.
Collections
- Medicine Research [1518 items ]