• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improvement of aluminum/polyethylene adhesion through corona discharge

    Thumbnail
    Date
    2017
    Author
    Popelka, Anton
    Krupa, Igor
    Novák, Igor
    Al-Maadeed, Mariam Ali S A
    Ouederni, Mabrouk
    Metadata
    Show full item record
    Abstract
    Polyethylene (PE) is often used in several industrial applications including the building, packaging and transport industries. Aluminum (Al) is widely used in different applications in the automotive, railway, aeronautic, and naval industries because of its excellent mechanical and chemical properties. Laminates prepared from Al and PE lead to an enhancement in physical and mechanical properties. These materials play a main role in the packaging and building sectors, such as in TetraPak containers and aluminum composite panels. The main problem observed is associated with the adhesion between polymers and metals. This research focused on investigating the enhancement in the adhesion of the PE/Al laminate using the corona discharge. The corona treatment of the surfaces led to a significant increase in the adhesion of the PE/Al laminate as a result of improved surface properties confirmed by peel test measurements. Moreover, the positive effect of the corona treatment in combination with a primer on the improvement of adhesion characteristics was observed too. Different analytical techniques were employed to characterize the effect of the corona treatment on the improvement in adhesion of PE/Al. A significant increase in wettability was confirmed by the measurement of contact angles. Changes in the surface morphology of the PE and Al surface, after the corona treatments at different operating conditions, were observed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). In addition, x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) were used to analyze changes in chemical composition after the corona discharge effect on PE and Al surfaces.
    DOI/handle
    http://dx.doi.org/10.1088/1361-6463/50/3/035204
    http://hdl.handle.net/10576/17629
    Collections
    • Center for Advanced Materials Research [‎1569‎ items ]
    • Materials Science & Technology [‎337‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video