• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    SARS-CoV-2 and immune-microbiome interactions: Lessons from respiratory viral infections

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    SARS-CoV-2 and immune-microbiome interactions Lessons from respiratory viral infections.pdf (1.923Mb)
    Date
    2021-04-30
    Author
    Farhan, Cyprian
    Sohail, Muhammad Umar
    Abdelhafez, Ibrahim
    Salman, Salma
    Attique, Zakria
    Kamareddine, Layla
    Al-Asmakh, Maha
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    By the beginning of 2020, infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had rapidly evolved into an emergent worldwide pandemic, an outbreak whose unprecedented consequences highlighted many existing flaws within public healthcare systems across the world. While coronavirus disease 2019 (COVID-19) is bestowed with a broad spectrum of clinical manifestations, involving the vital organs, the respiratory system transpires as the main route of entry for SARS-CoV-2, with the lungs being its primary target. Of those infected, up to 20% require hospitalization on account of severity, while the majority of patients are either asymptomatic or exhibit mild symptoms. Exacerbation in the disease severity and complications of COVID-19 infection have been associated with multiple comorbidities, including hypertension, diabetes mellitus, cardiovascular disorders, cancer, and chronic lung disease. Interestingly, a recent body of evidence indicated the pulmonary and gut microbiomes as potential modulators for altering the course of COVID-19, potentially via the microbiome-immune system axis. While the relative concordance between microbes and immunity has yet to be fully elucidated with regards to COVID-19, we present an overview of our current understanding of COVID-19-microbiome-immune cross talk and discuss the potential contributions of microbiome-related immunity to SARS-CoV-2 pathogenesis and COVID-19 disease progression.
    URI
    https://www.sciencedirect.com/science/article/pii/S1201971221001569
    DOI/handle
    http://dx.doi.org/10.1016/j.ijid.2021.02.071
    http://hdl.handle.net/10576/17970
    Collections
    • Biomedical Sciences [‎819‎ items ]
    • COVID-19 Research [‎849‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video