• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Study of π-conjugation effect of organic semiconductors on their optical parameters

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2016
    Author
    Ahmad, Zubair
    Zafar, Qayyum
    Touati, Farid
    Shakoor, R.A.
    Al-Thani, N.J.
    Metadata
    Show full item record
    Abstract
    Metal free organic semiconductor “7,16-bis(3,3-dimethyl-3H-indol-2-yl)-5,14-dihydrodibenzo [b,i][1,4,8,11] tetraazacyclotetradecine” and metal free with extended π-conjugation organic semiconductor “8,19-bis(3,3-dimethyl-3H-indol-2-yl)-6,17-dihydrodinaphthol [2,3-b:2′,3′-i][1,4,8,11] tetraazacyclotetradecine have been synthesized and the effect of conjugation on their photovoltaic parameters have been investigated. The photo-physical study reveals band gaps of 2.61 eV for metal free and 2.16 eV for extended material. The HOMO/LUMO levels of the materials are calculated using cyclic voltammetry (CV) study. The open circuit voltages of metal free and extended materials in single layer photovoltaic cells are observed to be 0.72 and 0.73 under simulated solar light illumination (air mass 1.5 G, 100 mW/cm2), respectively. The short circuit current in the extended materials is found to be more than ∼1.5 times higher the metal free material.
    DOI/handle
    http://dx.doi.org/10.1016/j.optmat.2016.02.009
    http://hdl.handle.net/10576/17990
    Collections
    • Center for Advanced Materials Research [‎1633‎ items ]
    • Electrical Engineering [‎2850‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video