• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Poly-carboxylic acids functionalized chitosan nanocarriers for controlled and targeted anti-cancer drug delivery

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2016
    Author
    Rajan, Mariappan
    Murugan, Maruthamuthu
    Ponnamma, Deepalekshmi
    Sadasivuni, Kishor Kumar
    Munusamy, Murugan A.
    Metadata
    Show full item record
    Abstract
    The present study evaluates the in-vitro cisplatin (CDDP) release from four different poly oxalates cross-linked chitosan (CS) nanocomposites. The poly oxalates were synthesized from the reaction of four different dicarboxylic acids with ethylene glycol (EG). The encapsulation of CDDP on CS cross-linked with Oxalic acid-EG, Succinic acid-EG, Citric acid-EG and tartaric acid-EG carriers were carried out by the ionic gelation technique. The poly-oxalate nanocarriers were characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction studies and zeta potential analysis. The stability of poly-oxalates was calculated by the density functional theory (DFT) using Gaussview 05. Excellent drug release kinetics and good biocompatibility of nanocomposites were observed for the in-vitro analysis. The unloaded poly oxalate nanocomposites perform to have a low inherent cytotoxicity, whereas the loaded nanocomposites were as active as free CDDP in the MCF-7 cancer cell line. The tumor growth inhibitions of CDDP-loaded nanocomposites are more or equal to that of free CDDP. Taken together, these two poly oxalate nanocomposites are established as promising drug carriers for the delivery of CDDP. 2016 Elsevier Masson SAS
    DOI/handle
    http://dx.doi.org/10.1016/j.biopha.2016.06.026
    http://hdl.handle.net/10576/21057
    Collections
    • Center for Advanced Materials Research [‎1564‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video