• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    In silico virtual screening of lead compounds for major antigenic sites in respiratory syncytial virus fusion protein.

    Thumbnail
    View/Open
    In silico virtual screening of lead compounds for major antigenic sites in respiratory syncytial virus fusion protein.pdf (2.611Mb)
    Date
    2021-05-03
    Author
    Mathew, Shilu
    Taleb, Sara
    Eid, Ali Hussein
    Althani, Asmaa A
    Yassine, Hadi M
    Metadata
    Show full item record
    Abstract
    Human respiratory syncytial virus (RSV) is a leading ubiquitous respiratory pathogen in newborn infants, young children, and the elderly, with no vaccine available to date. The viral fusion glycoprotein (RSV F) plays an essential role in the infection process, and it is a primary target of neutralizing antibodies, making it an attractive site for vaccine development. With this in view, there is a persistent need to identify selective antiviral drugs against RSV, targeting the major antigenic sites on the F protein. We aimed to conduct a robust in silico high-throughput drug screening of one million compounds to explore potential inhibitors that bind the major antigenic site Ø and site II on RSV F protein, which are the main target of neutralizing antibodies (NAb). We utilized the three-dimensional crystallographic structure of both antigenic site Ø on pre-F and antigenic II on post-F to screen for potential anti-RSV inhibitors. A library of one million small compounds was docked to explore lead binders in the major antigenic sites by using virtual lab bench CLC Drug Discovery. We also performed Quantitative Structure-Activity and Relationship (QSAR) for the lead best binders known for their antiviral activity. Among one million tested ligands, seven ligands (PubChem ID: 3714418, 24787350, 49828911, 24802036, 79824892, 49726463, and 3139884) were identified as the best binders to neutralizing epitopes site Ø and four ligands (PubChem ID: 865999, 17505357, 24802036, and 24285058) to neutralizing epitopes site II, respectively. These binders exhibited significant interactions with neutralizing epitopes on RSV F, with an average of six H bonds, docking energy of - 15.43 Kcal·mol, and minimum interaction energy of - 7.45 Kcal·mol. Using in silico virtual screening, we identified potential RSV inhibitors that bind two major antigenic sites on the RSV F protein. Using structure-based design and combination-based drug therapy, identified molecules could be modified to generate the next generation anti-RSV drugs. The online version contains supplementary material available at 10.1007/s42247-021-00213-6.
    DOI/handle
    http://dx.doi.org/10.1007/s42247-021-00213-6
    http://hdl.handle.net/10576/25284
    Collections
    • Biomedical Research Center Research [‎800‎ items ]
    • Medicine Research [‎1794‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video