• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ionic diffusion in iPP: DC electrical conductivity

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020
    Author
    Skipina, B.
    Petronijevic, I.M.
    Luyt, A. S.
    Dojcinovic, B.P.
    Duvenhage, M.M.
    Swart, H. C.
    Suljovrujic, E.
    Dudic, D.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    This study provides a new insight into the relationships between absorption and adsorption processes that occur during the treatment of iPP in aqueous solutions of metal-chloride salts, as well as the impact of these processes on the electrical conductivity of this nonpolar polymer. The polypropylene films (0.5 mm) were exposed to three-day treatments in aqueous solutions of chlorine salts of some alkali and transition metals at temperatures of 22 C and 80 C. The treatments induced an increase in the electrical conductivity of iPP, up to 800%. DC conductivity is not directly proportional to the concentrations of metals in the treated films due to the complex relationships between diffusion and adsorption processes. The experiment was set up to simulate the real-world conditions and the study provides practical knowledge on the stability of the electrical conductivity of iPP under exposure to aqueous solutions. The influence of electric aging on the electrical conductivity of the treated films was also examined.
    DOI/handle
    http://dx.doi.org/10.1016/j.surfin.2020.100772
    http://hdl.handle.net/10576/29900
    Collections
    • Center for Advanced Materials Research [‎1486‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video