Structural damage detection in real time: Implementation of 1D convolutional neural networks for SHM applications
Abstract
Most of the classical structural damage detection systems involve two processes, feature extraction and feature classification. Usually, the feature extraction process requires large computational effort which prevent the application of the classical methods in real-time structural health monitoring applications. Furthermore, in many cases, the hand-crafted features extracted by the classical methods fail to accurately characterize the acquired signal, resulting in poor classification performance. In an attempt to overcome these issues, this paper presents a novel, fast and accurate structural damage detection and localization system utilizing one dimensional convolutional neural networks (CNNs) arguably for the first time in SHM applications. The proposed method is capable of extracting optimal damage-sensitive features automatically from the raw acceleration signals, allowing it to be used for real-time damage detection. This paper presents the preliminary experiments conducted to verify the proposed CNN-based approach.
Collections
- Civil and Environmental Engineering [892 items ]
- Electrical Engineering [2885 items ]
Related items
Showing items related by title, author, creator and subject.
-
Structural Damage Detection in Civil Engineering with Machine Learning: Current State of the Art
Avci O.; Abdeljaber O.; Kiranyaz, Mustafa Serkan ( Springer , 2022 , Conference)This paper presents a brief overview of vibration-based structural damage detection studies that are based on machine learning (ML) in civil engineering structures. The review includes both parametric and nonparametric ... -
Convolutional neural networks for real-time and wireless damage detection
Avci O.; Abdeljaber O.; Kiranyaz, Mustafa Serkan; Inman D. ( Springer New York LLC , 2020 , Conference)Structural damage detection methods available for structural health monitoring applications are based on data preprocessing, feature extraction, and feature classification. The feature classification task requires considerable ... -
Structural health monitoring with self-organizing maps and artificial neural networks
Avci O.; Abdeljaber O.; Kiranyaz, Mustafa Serkan; Inman D. ( Springer New York LLC , 2020 , Conference)The use of self-organizing maps and artificial neural networks for structural health monitoring is presented in this paper. The authors recently developed a nonparametric structural damage detection algorithm for extracting ...

