Convolutional neural networks for real-time and wireless damage detection
Abstract
Structural damage detection methods available for structural health monitoring applications are based on data preprocessing, feature extraction, and feature classification. The feature classification task requires considerable computational power which makes the utilization of centralized techniques relatively infeasible for wireless sensor networks. In this paper, the authors present a novel Wireless Sensor Network (WSN) based on One Dimensional Convolutional Neural Networks (1D CNNs) for real-time and wireless structural health monitoring (SHM). In this method, each CNN is assigned to its local sensor data only and a corresponding 1D CNN is trained for each sensor unit without any synchronization or data transmission. This results in a decentralized system for structural damage detection under ambient environment. The performance of this method is tested and validated on a steel grid laboratory structure.
Collections
- Civil and Environmental Engineering [851 items ]
- Electrical Engineering [2647 items ]
Related items
Showing items related by title, author, creator and subject.
-
A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications
Avci O.; Abdeljaber O.; Kiranyaz, Mustafa Serkan; Hussein M.; Gabbouj M.; Inman D.J.... more authors ... less authors ( Academic Press , 2021 , Article Review)Monitoring structural damage is extremely important for sustaining and preserving the service life of civil structures. While successful monitoring provides resolute and staunch information on the health, serviceability, ... -
Structural health monitoring with self-organizing maps and artificial neural networks
Avci O.; Abdeljaber O.; Kiranyaz, Mustafa Serkan; Inman D. ( Springer New York LLC , 2020 , Conference Paper)The use of self-organizing maps and artificial neural networks for structural health monitoring is presented in this paper. The authors recently developed a nonparametric structural damage detection algorithm for extracting ... -
Structural Damage Detection in Civil Engineering with Machine Learning: Current State of the Art
Avci O.; Abdeljaber O.; Kiranyaz, Mustafa Serkan ( Springer , 2022 , Conference Paper)This paper presents a brief overview of vibration-based structural damage detection studies that are based on machine learning (ML) in civil engineering structures. The review includes both parametric and nonparametric ...