عرض بسيط للتسجيلة

المؤلفFuruya-Kanamori, Luis
المؤلفMeletis, Eletherios
المؤلفXu, Chang
المؤلفKostoulas, Polychronis
المؤلفDoi, Suhail A.R.
تاريخ الإتاحة2022-05-22T05:56:44Z
تاريخ النشر2022-03-01
اسم المنشورJournal of Evidence-Based Medicine
المعرّفhttp://dx.doi.org/10.1111/jebm.12467
الاقتباسFuruya-Kanamori, L, Meletis, E, Xu, C, Kostoulas, P, Doi, SAR Overconfident results with the bivariate random effects model for meta-analysis of diagnostic accuracy studies. J Evid Based Med. 2022; 15: 6– 9. https://doi.org/10.1111/jebm.12467.
الرقم المعياري الدولي للكتاب17565383
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85128124679&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/31342
الملخصMeta-analyses of diagnostic accuracy studies are a fundamental component of evidence-based medicine, and they are extensively used in medical imaging and the clinical laboratory. Techniques specifically developed to combine independent studies of diagnostic accuracy and provide pooled estimates for sensitivity (Se), specificity (Sp), positive (pLR) and negative (nLR) likelihood ratios are relatively new. In 2001, Rutter and Gatsonis proposed the hierarchical summary receiver operating characteristic (HSROC) model,1 and in 2004 Macaskill described an empirical Bayes approach.2 Soon after, in 2005, Reitsma et al. proposed the bivariate random effects model,3 which has been widely adopted and is the most commonly used method for diagnostic meta-analysis.4 However, as pointed out by Diaz,5 the statistical performance of the bivariate model has not been scrutinized. Diaz found that the performance of the bivariate model deteriorates when between-study heterogeneity increases and the number of studies decrease.5 Our simulation studies found similar results—with moderate levels of heterogeneity (tau2 = 1), the coverage probabilities of Se, Sp, and the diagnostic odds ratio (DOR) with the bivariate model dropped below the nominal level.6 Diagnostic accuracy studies usually favor sensitivity over specificity, or vice versa leading to diagnostic 2 × 2 tables with one or more of the cells with low frequency or zero counts. Thus, extreme DORs are more commonly observed in diagnostic than in intervention meta-analyses, which leads to high levels of heterogeneity (despite the wide confidence intervals of the studies).7
اللغةen
الناشرWiley
الموضوعBayesian
diagnosis
latent class
split component synthesis
العنوانOverconfident results with the bivariate random effects model for meta-analysis of diagnostic accuracy studies
النوعArticle
رقم العدد1
رقم المجلد15
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة