A review of time-frequency matched filter design with application to seizure detection in multichannel newborn EEG
الملخص
This paper presents a novel design of a time-frequency (t-f) matched filter as a solution to the problem of detecting a non-stationary signal in the presence of additive noise, for application to the detection of newborn seizure using multichannel EEG signals. The solution reduces to two possible t-f approaches that use a general formulation of t-f matched filters (TFMFs) based on the Wigner-Ville and cross Wigner-Ville distributions, and a third new approach based on the signal ambiguity domain representation; referred to as Radon-ambiguity detector. This contribution defines a general design formulation and then implements it for newborn seizure detection using multichannel EEG signals. Finally, the performance of different TFMFs is evaluated for different t-f kernels in terms of classification accuracy using real newborn EEG signals. Experimental results show that the detection method which uses TFMFs based on the cross Wigner-Ville distribution outperforms other approaches including the existing TFMF-based ones. The results also show that TFMFs which use high-resolution kernels such as the modified B-distribution, achieve higher detection accuracies compared to the ones which use other reduced-interference t-f kernels.
المجموعات
- الهندسة الكهربائية [2811 items ]
وثائق ذات صلة
عرض الوثائق المتصلة بواسطة: العنوان، المؤلف، المنشئ والموضوع.
-
Principles of time-frequency feature extraction for change detection in non-stationary signals: Applications to newborn EEG abnormality detection
Boashash B.; Azemi G.; Ali Khan N. ( Elsevier Ltd , 2015 , Article)This paper considers the general problem of detecting change in non-stationary signals using features observed in the time-frequency (t,f) domain, obtained using a class of quadratic time-frequency distributions (QTFDs). ... -
Drone-type-Set: Drone types detection benchmark for drone detection and tracking
AlDosari, Khloud; Osman, AIbtisam; Elharrouss, Omar; Al-Maadeed, Somaya; Chaari, Mohamed Zied ( Institute of Electrical and Electronics Engineers Inc. , 2024 , Conference)The Unmanned Aerial Vehicles (UAVs) market has been significantly growing and Considering the availability of drones at low-cost prices the possibility of misusing them, for illegal purposes such as drug trafficking, spying, ... -
Detection of Appliance-Level Abnormal Energy Consumption in Buildings Using Autoencoders and Micro-moments
Himeur, Yassine; Alsalemi, Abdullah; Bensaali, Faycal; Amira, Abbes ( Springer Science and Business Media Deutschland GmbH , 2022 , Conference)The detection of anomalous energy usage could help significantly in signaling energy wastage and identifying faulty appliances, especially if the individual power traces are analyzed. To that end, this paper proposes a ...