A review of time-frequency matched filter design with application to seizure detection in multichannel newborn EEG
View/ Open
Publisher version (Check access options)
Check access options
Date
2014Metadata
Show full item recordAbstract
This paper presents a novel design of a time-frequency (t-f) matched filter as a solution to the problem of detecting a non-stationary signal in the presence of additive noise, for application to the detection of newborn seizure using multichannel EEG signals. The solution reduces to two possible t-f approaches that use a general formulation of t-f matched filters (TFMFs) based on the Wigner-Ville and cross Wigner-Ville distributions, and a third new approach based on the signal ambiguity domain representation; referred to as Radon-ambiguity detector. This contribution defines a general design formulation and then implements it for newborn seizure detection using multichannel EEG signals. Finally, the performance of different TFMFs is evaluated for different t-f kernels in terms of classification accuracy using real newborn EEG signals. Experimental results show that the detection method which uses TFMFs based on the cross Wigner-Ville distribution outperforms other approaches including the existing TFMF-based ones. The results also show that TFMFs which use high-resolution kernels such as the modified B-distribution, achieve higher detection accuracies compared to the ones which use other reduced-interference t-f kernels.
Collections
- Electrical Engineering [2850 items ]
Related items
Showing items related by title, author, creator and subject.
-
Principles of time-frequency feature extraction for change detection in non-stationary signals: Applications to newborn EEG abnormality detection
Boashash B.; Azemi G.; Ali Khan N. ( Elsevier Ltd , 2015 , Article)This paper considers the general problem of detecting change in non-stationary signals using features observed in the time-frequency (t,f) domain, obtained using a class of quadratic time-frequency distributions (QTFDs). ... -
Drone-type-Set: Drone types detection benchmark for drone detection and tracking
AlDosari, Khloud; Osman, AIbtisam; Elharrouss, Omar; Al-Maadeed, Somaya; Chaari, Mohamed Zied ( Institute of Electrical and Electronics Engineers Inc. , 2024 , Conference)The Unmanned Aerial Vehicles (UAVs) market has been significantly growing and Considering the availability of drones at low-cost prices the possibility of misusing them, for illegal purposes such as drug trafficking, spying, ... -
Con-Detect: Detecting adversarially perturbed natural language inputs to deep classifiers through holistic analysis
Hassan, Ali; Khan, Muhammad Suleman; AlGhadhban, Amer; Alazmi, Meshari; Alzamil, Ahmed; Al-utaibi, Khaled; Qadir, Junaid... more authors ... less authors ( Elsevier , 2023 , Article)Deep Learning (DL) algorithms have shown wonders in many Natural Language Processing (NLP) tasks such as language-to-language translation, spam filtering, fake-news detection, and comprehension understanding. However, ...