• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effectiveness of epoxy coating modified with yttrium oxide loaded with imidazole on the corrosion protection of steel

    Thumbnail
    View/Open
    nanomaterials-11-02291.pdf (1.310Mb)
    Date
    2021
    Author
    Nawaz, Muddasir
    Naeem, Nazal
    Kahraman, Ramazan
    Montemor, M. F.
    Haider, W.
    Shakoor, R. A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The search for highly effective corrosion protection solutions to avoid degradation of the metallic parts is enabling the development of polymeric organic coatings. Of particular relevance, polymeric nanocomposite coatings, modified with corrosion inhibitors, have been developed to provide enhanced surface protection. In this work, yttrium oxide nanoparticles loaded with corrosion inhibitor (Imidazole), used as additives in the formulation of epoxy for coated on the steel substrate. The loading of Y2O3 with imidazole was confirmed by field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and Brunauer-Emmett-Teller analysis. UV-Vis analysis demonstrated the pH-sensitive behavior of the imidazole that helps in self-release when necessary. Electrochemical impedance spectroscopy (EIS) of the coated samples revealed that the coating modified with Y2O3/IMD provides better corrosion protection compared to coatings containing only Y2O3 . XPS analysis validated the presence of an imidazole protective film on the steel substrate that enhanced the corrosion resistance of the coated samples.
    DOI/handle
    http://dx.doi.org/10.3390/nano11092291
    http://hdl.handle.net/10576/34823
    Collections
    • Center for Advanced Materials Research [‎1522‎ items ]
    • Chemical Engineering [‎1202‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video