• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effect of concentration of TiC on the properties of pulse electrodeposited Ni-P-TiC nanocomposite coatings

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2021
    Author
    Shahzad, Khuram
    Radwan, A. Bahgat
    Fayyaz, Osama
    Shakoor, R.A.
    Uzma, Madeeha
    Umer, M. Adeel
    Baig, M.N.
    Raza, A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Ni-P/TiC nanocomposite coatings, including different concentrations of TiC nanoparticles (TCNPs) were developed on HSLA (high strength low alloy steel) substrates through the pulse electrodeposition (PED) process. The prepared coatings' structural, compositional, mechanical, wear, and electrochemical properties were accomplished, applying numerous characterizing techniques. The surface morphologies show the coatings are uniform, and compact, which appears flawless. An increase in the mechanical response of Ni-P/TiC is noticed with an increasing amount of TCNPs into the Ni-P matrix, attaining its highest values (720 Hv microhardness, 22.22 GPa modulus, 7.26 kN/m stiffness), and the lowest wear rate (ws) of 0.87 ? gm/Nm) for Ni-P/0.75TiC composition. The improvement in mechanical behavior can be attributed to grain refinement and dispersion hardening effect. Electrochemical Impedance Spectroscopy (EIS) and Potentiodynamic plots reveal a substantial increment in Ni-P coatings' corrosion resistance by successively incorporating TCNPs. As a comparison, Ni-P/0.75TiC coatings demonstrate the highest corrosion protection requirement efficiency (PE) of 94% in saline water. The promising performance of Ni-P/0.75TiC coating can be credited to forming a compact structure containing inactive TCNPs in the Ni-P matrix.
    DOI/handle
    http://dx.doi.org/10.1016/j.ceramint.2021.03.259
    http://hdl.handle.net/10576/34827
    Collections
    • Center for Advanced Materials Research [‎1486‎ items ]
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video