• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Paraviral cutaneous manifestations associated to SARS-CoV-2 Omicron variant

    View/Open
    Paraviral Cutaneous manifestations SARS CoV2 (1.636Mb)
    Date
    2022-01-01
    Author
    Zupin, Luisa
    Moltrasio, Chiara
    Tricarico, Paola Maura
    Del Vecchio, Cecilia
    Fontana, Francesco
    Marzano, Angelo Valerio
    Crovella, Sergio
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Background: The spreading of the SARS-CoV-2 Omicron variant is probably due to its increased transmissibility and ability to escape from neutralising antibodies. Cutaneous manifestations have been reported after infection with the Omicron strain, consisting mainly of generalised urticarial eruption and prickly heat rash, also known as miliaria, that can persist for several days. Here the impact of Omicron SARS-CoV-2 on skin was investigated. Methods: The case series of 10 patients with SARS-CoV-2 Omicron variant-related cutaneous manifestations were described; moreover, skin derived cells were challenged in vitro with SARS-CoV-2 Omicron variant. Results: The main clinical cutaneous features observed were urticarial lesions lasting more than 24 h, mainly involving the trunk and sometimes extending to the extremities, and miliaria presenting with clusters of small sweat-filled vesicles, sometimes surrounded by slight erythema. HaCaT keratinocytes, BJ fibroblast cell lines and outer root sheath (ORS) keratinocytes were not susceptible to SARS-CoV-2 Omicron variant infection; they also did not present any evident cytopathic effect or modification of cells viability. Conclusion: Our findings suggests that, despite the high number of nucleotide mutations in the spike protein of SARS-CoV-2 Omicron variant, responsible to the higher transmissibility of this virus, and the increased reports of cutaneous manifestation in COVID-19 affected patients, the virus is not able to directly infect and damage the keratinocytes and fibroblasts, thus suggesting an indirect virus-induced activation of the immune system as the major pathogenetic driver.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85144168577&origin=inward
    DOI/handle
    http://dx.doi.org/10.1080/23744235.2022.2153913
    http://hdl.handle.net/10576/37579
    Collections
    • Biological & Environmental Sciences [‎661‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video