• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Impact of feature reduction and operating temperature on gas identification

    Thumbnail
    التاريخ
    2015
    المؤلف
    Akbar, Muhammad Ali
    Ali, Amine Ait Si
    Amira, Abbes
    Bensaali, Faycal
    Benammar, Mohieddine Amor
    Hassan, Muhammad
    Bermak, Amine
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Tin-oxide based gas sensor requires an operating temperature typically in the range of 200 °C to 400 °C and its performance dependents on this temperature. In this paper a deep examination has been made to analyze the best operating temperature suitable for gas identification application in which an array of sensors is used along with an appropriate feature reduction algorithm. The two most common feature reduction algorithms for gas classification are principal component analysis (PCA) and linear discriminant analysis (LDA); both of them have been used in this analytical work. The feature reduction is followed by a binary decision tree (BDT) or K-nearest neighbor (KNN) based classifier. Results obtained with data from an array of sensors used for detecting C6H6, CH2O, CO, NO2 and SO2 indicates that at 400 °C the BDT can classify 100% of gases after LDA based feature reduction, whereas KNN can classify 100% of gases at 200 °C and 300 °C using data before and after feature reduction. Furthermore, experimental results from the given sensor data suggest that with and without considering the operating temperature the BDT can classify 96% of gases using first four LDA components. While KNN can classify 98% to 99% of gases using first four LDA or first five PCA components of resulting data obtained after feature reduction. Thus, after LDA-based feature reduction both classifiers provide superior identification with minimum number of components. 2006-2015 Asian Research Publishing Network (ARPN).
    DOI/handle
    http://hdl.handle.net/10576/37808
    المجموعات
    • الهندسة الكهربائية [‎2840‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video