• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Impact of feature reduction and operating temperature on gas identification

    Thumbnail
    Date
    2015
    Author
    Akbar, Muhammad Ali
    Ali, Amine Ait Si
    Amira, Abbes
    Bensaali, Faycal
    Benammar, Mohieddine Amor
    Hassan, Muhammad
    Bermak, Amine
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Tin-oxide based gas sensor requires an operating temperature typically in the range of 200 °C to 400 °C and its performance dependents on this temperature. In this paper a deep examination has been made to analyze the best operating temperature suitable for gas identification application in which an array of sensors is used along with an appropriate feature reduction algorithm. The two most common feature reduction algorithms for gas classification are principal component analysis (PCA) and linear discriminant analysis (LDA); both of them have been used in this analytical work. The feature reduction is followed by a binary decision tree (BDT) or K-nearest neighbor (KNN) based classifier. Results obtained with data from an array of sensors used for detecting C6H6, CH2O, CO, NO2 and SO2 indicates that at 400 °C the BDT can classify 100% of gases after LDA based feature reduction, whereas KNN can classify 100% of gases at 200 °C and 300 °C using data before and after feature reduction. Furthermore, experimental results from the given sensor data suggest that with and without considering the operating temperature the BDT can classify 96% of gases using first four LDA components. While KNN can classify 98% to 99% of gases using first four LDA or first five PCA components of resulting data obtained after feature reduction. Thus, after LDA-based feature reduction both classifiers provide superior identification with minimum number of components. 2006-2015 Asian Research Publishing Network (ARPN).
    DOI/handle
    http://hdl.handle.net/10576/37808
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video