• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modified halloysite nanotubes decorated with Ceria for synergistic corrosion inhibition of Polyolefin based smart composite coatings

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0169131723000145-main.pdf (5.912Mb)
    Date
    2023
    Author
    Qureshi, Ahmadyar
    Habib, Sehrish
    Nawaz, Muddasir
    Shakoor, R.A.
    Kahraman, Ramazan
    Ahmed, Elsadig Mahdi
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The deteriorating effect of corrosion can be controlled by applying suitable polymeric-based coatings. In this work, polyolefin based smart composite coatings containing modified halloysite nanotubes decorated with ceria particles were investigated to analyze their anti-corrosion behavior. For this purpose, halloysite nanotubes (Hals) were utilized as nanocarriers which were loaded with sodium dodecyl sulfate (SDS) as a corrosion inhibitor via overnight stirring and vacuum cycling method. The loaded Hals were then modified/decorated with cerium oxide (CeO2) particles by reacting cerium nitrate (Ce (NO3)3.6H2O) and sodium hydroxide (NaOH) which resulted in the formation of CeO2@HAL/SDS. The synthesized modified particles (CeO2@HAL/SDS) were characterized by energy-dispersive X-ray spectroscopy (EDX), Transmission electron microscopy (TEM), Fourier-Transform Infrared Spectrometer (FTIR), Thermogravimetric analysis (TGA), and differential thermal gravimetric analysis (DTA), X-ray diffraction analysis (XRD) and UV-vis spectroscopic analysis. TGA analysis results demonstrated that about 32% (w/w) of SDS has been loaded into Hal, and 47% (w/w) of CeO2 has been immobilized on the surface of Hal. UV-Vis analysis results demonstrated the pH-sensitive and time-dependent release behavior of synthesized particles. Furthermore, the modified CeO2@HAL/SDS particles (1 wt%) were reinforced into the polyolefin-based matrix, coated on a polished steel substrate and their electrochemical properties were investigated. The electrochemical impedance spectroscopy (EIS) analysis confirms the promising improvement in the corrosion inhibition performance of polyolefin coatings modified with CeO2@HAL/SDS particles when compared to the polyolefin composite coatings modified with HAL/SDS due to the synergistic corrosion inhibition performance of Ce(OH)3 and Fe-SDS formation at the cathodic and anodic region of steel.
    DOI/handle
    http://dx.doi.org/10.1016/j.clay.2023.106827
    http://hdl.handle.net/10576/40095
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]
    • Chemical Engineering [‎1194‎ items ]
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video