Modified halloysite nanotubes decorated with Ceria for synergistic corrosion inhibition of Polyolefin based smart composite coatings
Author | Qureshi, Ahmadyar |
Author | Habib, Sehrish |
Author | Nawaz, Muddasir |
Author | Shakoor, R.A. |
Author | Kahraman, Ramazan |
Author | Ahmed, Elsadig Mahdi |
Available date | 2023-02-15T10:16:35Z |
Publication Date | 2023 |
Publication Name | Applied Clay Science |
Resource | Scopus |
Abstract | The deteriorating effect of corrosion can be controlled by applying suitable polymeric-based coatings. In this work, polyolefin based smart composite coatings containing modified halloysite nanotubes decorated with ceria particles were investigated to analyze their anti-corrosion behavior. For this purpose, halloysite nanotubes (Hals) were utilized as nanocarriers which were loaded with sodium dodecyl sulfate (SDS) as a corrosion inhibitor via overnight stirring and vacuum cycling method. The loaded Hals were then modified/decorated with cerium oxide (CeO2) particles by reacting cerium nitrate (Ce (NO3)3.6H2O) and sodium hydroxide (NaOH) which resulted in the formation of CeO2@HAL/SDS. The synthesized modified particles (CeO2@HAL/SDS) were characterized by energy-dispersive X-ray spectroscopy (EDX), Transmission electron microscopy (TEM), Fourier-Transform Infrared Spectrometer (FTIR), Thermogravimetric analysis (TGA), and differential thermal gravimetric analysis (DTA), X-ray diffraction analysis (XRD) and UV-vis spectroscopic analysis. TGA analysis results demonstrated that about 32% (w/w) of SDS has been loaded into Hal, and 47% (w/w) of CeO2 has been immobilized on the surface of Hal. UV-Vis analysis results demonstrated the pH-sensitive and time-dependent release behavior of synthesized particles. Furthermore, the modified CeO2@HAL/SDS particles (1 wt%) were reinforced into the polyolefin-based matrix, coated on a polished steel substrate and their electrochemical properties were investigated. The electrochemical impedance spectroscopy (EIS) analysis confirms the promising improvement in the corrosion inhibition performance of polyolefin coatings modified with CeO2@HAL/SDS particles when compared to the polyolefin composite coatings modified with HAL/SDS due to the synergistic corrosion inhibition performance of Ce(OH)3 and Fe-SDS formation at the cathodic and anodic region of steel. |
Sponsor | This research was funded by the Qatar National Research Fund (a member of the Qatar Foundation ), grant number NPRP13S-0120-200116 and Qatar University internal grant number QUCG-CENG-22/23-461 . Statements made herein are solely the responsibility of the authors. |
Language | en |
Publisher | Elsevier |
Subject | Ceria Corrosion inhibition Halloysite nanotube Polyolefin coating Sodium dodecyl sulfate |
Type | Article |
Volume Number | 233 |
Check access options
Files in this item
This item appears in the following Collection(s)
-
Center for Advanced Materials Research [1378 items ]
-
Chemical Engineering [1174 items ]
-
Mechanical & Industrial Engineering [1396 items ]