• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Thermal and mechanical characterization of injection moulded high density polyethylene/paraffin wax blends as phase change materials

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2014-08
    Author
    Sotomayor, M.E.
    Krupa, I.
    Varez, A.
    Levenfeld, B.
    Metadata
    Show full item record
    Abstract
    Thermal and mechanical properties of blends based on high density polyethylene and paraffin wax were investigated. The blends were prepared from 5 to 50vol. % of paraffin wax employing a twin-screw extruder. Thermal behaviour of samples was determined by differential scanning calorimetry, thermogravimetric and dynamic mechanical analyses. A displacement of melting temperature of polyethylene was detected as a consequence of the plasticization effect of wax. These results revealed that melting temperatures and latent heats of samples are suitable for their application as phase change materials. Blends were processed by injection moulding which is an advantageous method to obtain pieces of this kind of materials. The evolution of loss tangent versus temperature of injected samples showed the lack of miscibility between the components of the blend. Tensile tests were carried out to characterize the mechanical strength of blends. Elongation at break decreased as paraffin wax content increased, and Young's modulus decreased with wax content but in the case of blends with a 30vol. % of wax and more, brittle rupture occurred and no yield point was observed.
    DOI/handle
    http://dx.doi.org/10.1016/j.renene.2014.01.036
    http://hdl.handle.net/10576/4179
    Collections
    • Center for Advanced Materials Research [‎1564‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video