PCovNet: A presymptomatic COVID-19 detection framework using deep learning model using wearables data
Author | Abir, Farhan Fuad |
Author | Alyafei, Khalid |
Author | Chowdhury, Muhammad E.H. |
Author | Khandakar, Amith |
Author | Ahmed, Rashid |
Author | Hossain, Muhammad Maqsud |
Author | Mahmud, Sakib |
Author | Rahman, Ashiqur |
Author | Abbas, Tareq O. |
Author | Zughaier, Susu M. |
Author | Naji, Khalid Kamal |
Available date | 2023-04-17T06:57:42Z |
Publication Date | 2022 |
Publication Name | Computers in Biology and Medicine |
Resource | Scopus |
Abstract | While the advanced diagnostic tools and healthcare management protocols have been struggling to contain the COVID-19 pandemic, the spread of the contagious viral pathogen before the symptom onset acted as the Achilles' heel. Although reverse transcription-polymerase chain reaction (RT-PCR) has been widely used for COVID-19 diagnosis, they are hardly administered before any visible symptom, which provokes rapid transmission. This study proposes PCovNet, a Long Short-term Memory Variational Autoencoder (LSTM-VAE)-based anomaly detection framework, to detect COVID-19 infection in the presymptomatic stage from the Resting Heart Rate (RHR) derived from the wearable devices, i.e., smartwatch or fitness tracker. The framework was trained and evaluated in two configurations on a publicly available wearable device dataset consisting of 25 COVID-positive individuals in the span of four months including their COVID-19 infection phase. The first configuration of the framework detected RHR abnormality with average Precision, Recall, and F-beta scores of 0.946, 0.234, and 0.918, respectively. However, the second configuration detected aberrant RHR in 100% of the subjects (25 out of 25) during the infectious period. Moreover, 80% of the subjects (20 out of 25) were detected during the presymptomatic stage. These findings prove the feasibility of using wearable devices with such a deep learning framework as a secondary diagnosis tool to circumvent the presymptomatic COVID-19 detection problem. 2022 Elsevier Ltd |
Sponsor | This work was supported by the Qatar National Research Grant: UREP28-144-3-046. The statements made herein are solely the responsibility of the authors. |
Language | en |
Publisher | Elsevier |
Subject | Anomaly detection COVID-19 Long short-term memory Presymptomatic Resting heart rate Smartwatch Variational autoencoder |
Type | Article |
Volume Number | 147 |
Check access options
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
This item appears in the following Collection(s)
-
Biomedical Research Center Research [738 items ]
-
Civil and Environmental Engineering [851 items ]
-
COVID-19 Research [835 items ]
-
Electrical Engineering [2649 items ]
-
Mechanical & Industrial Engineering [1396 items ]
-
Medicine Research [1508 items ]