• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhance data availability and network consistency using artificial neural network for IoT

    Thumbnail
    Date
    2022
    Author
    Tabassum, Mujahid
    Perumal, Sundresan
    Kashem, Saad Bin Abdul
    Ponnan, Suresh
    Chakraborty, Chinmay
    Chowdhury, Muhammad E. H.
    Khandakar, Amith
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    IoT networks have become famous and utilized in many industries such as agriculture, medical, manufacture, and others due to their efficiency and productivity. WSN is an IoT network used for smart farming and smart health monitoring. WSNs can self-manage, self-configure, self-diagnose, and self-heal, making them ideal for agricultural monitoring. A wireless sensor network collects data from numerous sensor nodes scattered across the physical world. WSN data processing is critical when a node fails for unknown reasons. Data handling is an essential aspect of WSN; once any node fails due to unknown reasons, data reliability and availability become crucial. Hence, limited battery energy, low bandwidth, limited computing capacity, and link failure affect network performance. Therefore, an effective cluster-based data aggregation with an appropriate routing must be designed in the media access control. The proposed hybrid artificial neural network and decision tree algorithm with cognitive radio is developed to select the cluster head. The higher amount of residual energy increases the number of packets received at the base station and aggregate the data from the normal sensor nodes. The on-demand routing protocol is designed to keep data in local storage for retransmission during link failure to obtain reliable data transmission. The proposed method performance is analyzed as residual energy, end to end delay, normalized overhead, packet delivery ratio, packet drop, and throughput. This proposed method is evaluated with the cluster-based data aggregation scheme to prove its efficiency. The proposed method residual energy is 8.3Joules for 50 nodes; it is high compared to the cluster-based data aggregation scheme. 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
    DOI/handle
    http://dx.doi.org/10.1007/s11042-022-13337-6
    http://hdl.handle.net/10576/41963
    Collections
    • Electrical Engineering [‎2823‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Self-organized Operational Neural Networks with Generative Neurons 

      Kiranyaz, Mustafa Serkan; Malik J.; Abdallah H.B.; Ince T.; Iosifidis A.; Gabbouj M.... more authors ... less authors ( Elsevier Ltd , 2021 , Article)
      Operational Neural Networks (ONNs) have recently been proposed to address the well-known limitations and drawbacks of conventional Convolutional Neural Networks (CNNs) such as network homogeneity with the sole linear neuron ...
    • Thumbnail

      Wireless Network Slice Assignment with Incremental Random Vector Functional Link Network 

      He, Yu Lin; Ye, Xuan; Cui, Laizhong; Fournier-Viger, Philippe; Luo, Chengwen; Huang, Joshua Zhexue; Suganthan, Ponnuthurai N.... more authors ... less authors ( IEEE Computer Society , 2022 , Article)
      This paper presents an artificial intelligence-assisted network slice prediction method, which utilizes a novel incremental random vector functional link (IRVFL) network to deal with the wireless network slice assignment ...
    • Thumbnail

      A novel multi-hop body-To-body routing protocol for disaster and emergency networks 

      Ben Arbia, Dhafer; Alam, Muhammad Mahtab; Attia, Rabah; Ben Hamida, Elye ( Institute of Electrical and Electronics Engineers Inc. , 2016 , Conference)
      In this paper, a new multi-hop routing protocol (called ORACE-Net) for disaster and emergency networks is proposed. The proposed hierarchical protocol creates an ad-hoc network through body-To-body (B2B) communication ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video