Enhance data availability and network consistency using artificial neural network for IoT
التاريخ
2022المؤلف
Tabassum, MujahidPerumal, Sundresan
Kashem, Saad Bin Abdul
Ponnan, Suresh
Chakraborty, Chinmay
Chowdhury, Muhammad E. H.
Khandakar, Amith
...show more authors ...show less authors
البيانات الوصفية
عرض كامل للتسجيلةالملخص
IoT networks have become famous and utilized in many industries such as agriculture, medical, manufacture, and others due to their efficiency and productivity. WSN is an IoT network used for smart farming and smart health monitoring. WSNs can self-manage, self-configure, self-diagnose, and self-heal, making them ideal for agricultural monitoring. A wireless sensor network collects data from numerous sensor nodes scattered across the physical world. WSN data processing is critical when a node fails for unknown reasons. Data handling is an essential aspect of WSN; once any node fails due to unknown reasons, data reliability and availability become crucial. Hence, limited battery energy, low bandwidth, limited computing capacity, and link failure affect network performance. Therefore, an effective cluster-based data aggregation with an appropriate routing must be designed in the media access control. The proposed hybrid artificial neural network and decision tree algorithm with cognitive radio is developed to select the cluster head. The higher amount of residual energy increases the number of packets received at the base station and aggregate the data from the normal sensor nodes. The on-demand routing protocol is designed to keep data in local storage for retransmission during link failure to obtain reliable data transmission. The proposed method performance is analyzed as residual energy, end to end delay, normalized overhead, packet delivery ratio, packet drop, and throughput. This proposed method is evaluated with the cluster-based data aggregation scheme to prove its efficiency. The proposed method residual energy is 8.3Joules for 50 nodes; it is high compared to the cluster-based data aggregation scheme. 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
المجموعات
- الهندسة الكهربائية [2649 items ]
وثائق ذات صلة
عرض الوثائق المتصلة بواسطة: العنوان، المؤلف، المنشئ والموضوع.
-
Self-organized Operational Neural Networks with Generative Neurons
Kiranyaz, Mustafa Serkan; Malik J.; Abdallah H.B.; Ince T.; Iosifidis A.; Gabbouj M.... more authors ... less authors ( Elsevier Ltd , 2021 , Article)Operational Neural Networks (ONNs) have recently been proposed to address the well-known limitations and drawbacks of conventional Convolutional Neural Networks (CNNs) such as network homogeneity with the sole linear neuron ... -
Wireless Network Slice Assignment with Incremental Random Vector Functional Link Network
He, Yu Lin; Ye, Xuan; Cui, Laizhong; Fournier-Viger, Philippe; Luo, Chengwen; Huang, Joshua Zhexue; Suganthan, Ponnuthurai N.... more authors ... less authors ( IEEE Computer Society , 2022 , Article)This paper presents an artificial intelligence-assisted network slice prediction method, which utilizes a novel incremental random vector functional link (IRVFL) network to deal with the wireless network slice assignment ... -
A novel multi-hop body-To-body routing protocol for disaster and emergency networks
Ben Arbia, Dhafer; Alam, Muhammad Mahtab; Attia, Rabah; Ben Hamida, Elye ( Institute of Electrical and Electronics Engineers Inc. , 2016 , Conference Paper)In this paper, a new multi-hop routing protocol (called ORACE-Net) for disaster and emergency networks is proposed. The proposed hierarchical protocol creates an ad-hoc network through body-To-body (B2B) communication ...