• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Pyrolytic elimination of ethylene from ethoxyquinolines and ethoxyisoquinolines: a computational study

    Thumbnail
    View/Open
    s41598-023-33272-2.pdf (3.572Mb)
    Date
    2023
    Author
    Abdel-Rahman, Mohamed A.
    Shibl, Mohamed F.
    Mahmoud, Mohamed A. M.
    Metadata
    Show full item record
    Abstract
    This work reports a thermo-kinetic study on unimolecular thermal decomposition of some ethoxyquinolines and ethoxyisoquinolines derivatives (1-ethoxyisoquinoline (1-EisoQ), 2-ethoxyquinoline (2-EQ), 3-ethoxyquinoline (3-EQ), 3-ethoxyisoquinoline (3-EisoQ), 4-ethoxyquinoline (4-EQ), 4-ethoxyisoquinoline (4-EisoQ), 5-ethoxyquinoline (5-EQ), 5-ethoxyisoquinoline (5-EisoQ), 8-ethoxyquinoline (8-EQ) and 8-ethoxyisoquinoline (8-EisoQ)) using density functional theory DFT (BMK, MPW1B95, M06-2X) and ab initio complete basis set-quadratic Becke3 (CBS-QB3) calculations. In the course of the decomposition of the investigated systems, ethylene is eliminated with the production of either keto or enol tautomer. The six-membered transition state structure encountered in the path of keto formation is much lower in energy than the four-membered transition state required to give enol form. Rate constants and activation energies for the decomposition of 1-EisoQ, 2-EQ, 3-EQ, 3-EisoQ, 4-EQ, 4-EisoQ, 5-EQ, 5-EisoQ, 8-EQ, and 8-EisoQ have been estimated at different temperatures and pressures using conventional transition state theory combined with Eckart tunneling and the unimolecular statistical Rice–Ramsperger–Kassel–Marcus theories. The tunneling correction is significant at temperatures up to 1000 K. Rate constants results reveal that ethylene elimination and keto production are favored kinetically and thermodynamically over the whole temperature range of 400–1200 K and the rates of the processes under study increase with the rising of pressure up to 1 atm.
    DOI/handle
    http://dx.doi.org/10.1038/s41598-023-33272-2
    http://hdl.handle.net/10576/42693
    Collections
    • Center for Sustainable Development Research [‎339‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video