• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synthesis and characterization of stir casted Cu-ZrO2-Graphite hybrid metal matrix composites for thermal management structures

    Thumbnail
    Date
    2022-04-13
    Author
    Mittal, Prateek
    Acharya, Vishwas
    Kumar, Sanjeet
    Paswan, Manikant
    Sadasivuni, Kishor Kumar
    Gupta, Pallav
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The present study aims at investigating the properties of copper matrix-based hybrid metal matrix composites (MMCs) reinforced with ZrO2 and Graphite. The MMCs were prepared using stir casting technique. The composite material was developed for its application in thermal management structures. The properties of the prepared MMCs were found to be dependent on the reinforcements content present in the MMCs. ZrO2 and Graphite reinforcements were added (0.5–0.5, 1.0–1.0, 1.5–1.5 and 2.0–2.0 wt %) in the four composite samples prepared via stir casting. Amongst several available techniques, stir casting was chosen to prepare the samples due to its simplicity and economic viability. The phase identification was done by using X-ray diffraction (XRD) and the microstructure was observed using Scanning Electron Microscopy (SEM). No intermediate phase was observed from the XRD results. The reinforcement phase was found to be dispersed in a uniform manner as observed through the SEM micrographs. The density of the samples was found to decrease with an increase in the reinforcements content. The density of the composite sample containing 2 wt. % of each reinforcement was found to be 8.01 g/cm3 which was 10% lesser than pure copper. Hardness of pure copper sample was found to be 35.71 BHN; however, the hardness of composite sample containing 4 wt. % of each of the reinforcements was found to be 70.14 BHN which indicates an increase of around 100%. Wear rate of pure copper and composite sample containing 5 wt. % of each of the reinforcements was found to be 0.3788 mm3/Km and 0.3603 mm3/Km, respectively, at 20 N load. However, the composite samples consisting of 4 wt. % of each of the reinforcements exhibited wear rate of 0.3001 mm3/Km which was 20% lesser than that of pure copper at the same load. The compressive strength of composite sample containing 2.0 wt. % ZrO2 and graphite was found to be 674.57 MPa which was around 1.25% higher than the composite sample containing 0.5 wt. % reinforcements. The specific heat of the samples was found to increase marginally with an increase in reinforcement content. It is expected that the hybrid composites developed will be suitable for use in structural applications pertaining to thermal management.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85129299735&origin=inward
    DOI/handle
    http://dx.doi.org/10.1177/09544062221078197
    http://hdl.handle.net/10576/42851
    Collections
    • Center for Advanced Materials Research [‎1486‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video