• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Recent developments in forward osmosis membranes using carbon-based nanomaterials

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020
    Author
    Yadav, Sudesh
    Saleem, Haleema
    Ibrar, Ibrar
    Naji, Osamah
    Hawari, Alaa A.
    Alanezi, Adnan Alhathal
    Zaidi, Syed Javaid
    Altaee, Ali
    Zhou, John
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Contamination and industrial development are among the reasons for water quality deterioration beyond treatability by conventional processes. Unfortunately, conventional water and wastewater treatment technologies are not always capable of handling industrial wastewaters, and hence more advanced treatment technologies are required. The new trend of osmotically driven membrane technologies has demonstrated an exceptional efficiency for water purification and treatment including seawater desalination. Compared to pressure-driven membrane processes, forward osmosis (FO) technology, as a standalone process, is more energy-efficient, and less prone to membrane fouling than its predecessor reverse osmosis (RO) technology. However, forward osmosis suffers a severe concentration polarization that is acting on both sides of the membrane and results in a sharp decline in water flux. A thinner support layer has been recommended to lessen the concentration polarization impact in the FO process but a very thin support layer compromises the membrane mechanical strength. Recently, researchers have applied different carbon-based nanomaterials to enhance water flux, fouling propensity, and mechanical strength of the FO membrane. This work reviews advancement in the FO membrane fabrication using carbon nanomaterials to improve the membrane characteristics. Despite a large number of laboratory experiments, carbon-based nanomaterials in the FO membrane are still at the early-stage of laboratory investigation and no commercial products are available yet. The study also reviews the main challenges that limit the application of carbon-based nanomaterials for FO membranes. 2020 Elsevier B.V.
    DOI/handle
    http://dx.doi.org/10.1016/j.desal.2020.114375
    http://hdl.handle.net/10576/43354
    Collections
    • Center for Advanced Materials Research [‎1522‎ items ]
    • Civil and Environmental Engineering [‎867‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video