• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling of forward osmosis process using artificial neural networks (ANN) to predict the permeate flux

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020
    Author
    Jawad, Jasir
    Hawari, Alaa H.
    Zaidi, Syed
    Metadata
    Show full item record
    Abstract
    Artificial neural networks (ANN) are black box models that are becoming more popular than transport-based models due to their high accuracy and less computational time in predictions. The literature shows a lack of ANN models to evaluate the forward osmosis (FO) process performance. Therefore, in this study, a multi-layered neural network model is developed to predict the permeate flux in forward osmosis. The developed model is tested for its generalization capability by including lab-scale experimental data from several published studies. Nine input variables are considered including membrane type, the orientation of membrane, molarity of feed solution and draw solution, type of feed solution and draw solution, crossflow velocity of the feed solution, and the draw solution and temperature of the feed solution and the draw solution. The development of optimum network architecture is supported by studying the impact of the number of neurons and hidden layers on the neural network performance. The optimum trained network shows a high R2 value of 97.3% that is the efficiency of the model to predict the targeted output. Furthermore, the validation and generalized prediction capability of the model is tested against untrained published data. The performance of the ANN model is compared with a transport-based model in the literature. A simple machine learning technique such as a multiple linear regression (MLR) model is also applied in a similar manner to be compared with the ANN model. ANN demonstrates its ability to form a complex relationship between inputs and output better than MLR. 2020 Elsevier B.V.
    DOI/handle
    http://dx.doi.org/10.1016/j.desal.2020.114427
    http://hdl.handle.net/10576/43355
    Collections
    • Center for Advanced Materials Research [‎1510‎ items ]
    • Civil and Environmental Engineering [‎864‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video