• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Soil moisture effects on leaf litter decomposition and soil carbon dioxide efflux in wetland and upland forests

    Thumbnail
    Date
    2014-08
    Author
    Yoon, Tae Kyung
    Noh, Nam Jin
    Han, Saerom
    Lee, Jongyeol
    Son, Yowhan
    Metadata
    Show full item record
    Abstract
    This study examined, first, the response of litter decomposition and soil CO2 efflux (RS) to different soil moisture conditions and, second, the application of various litter decomposition functions in a wetland and upland forest dominated by Japanese alder. One upland site (US) and three wetland sites—a drained site (DS), poorly drained site (PDS), and surface saturated site (SSS)—were selected based on their variation in soil moisture conditions. Litter mass loss, as determined by a 4-yr litter bag incubation, was applied to Olson’s simple exponential function, Berg’s asymptotic function, and the rational function. The litter decomposition rate constant (yr−1), which was commonly obtained by the simple exponential function, was highest in PDS (1.181), followed by SSS (0.950), DS (0.922), and US (0.528). The limit value of the litter mass loss, as determined by the asymptotic function was higher in DS (91.7%) and PDS (89.0%) than in SSS (76.9%) and US (70.5%). The rational function provided the most precise fitting of the litter mass loss pattern with few parameters. Periodic saturation and the higher leaf N content in PDS may enhance litter decomposition compared to constant saturation or drained conditions. The RS (mg C m−2 h−1) values, periodically measured using a portable infrared gas analyzer, were ranked in the order US (12.6–355.1) = DS (7.1–324.0) > PDS (5.5–220.9) > SSS (0.0–153.8). More hydric conditions probably reduced the vegetation biomass (in contribution to autotrophic RS) and aerobic microbial activities (in contribution to heterotrophic RS). The RS temperature dependency (Q10) was little affected by soil moisture conditions, ranging from 2.48 to 2.69. It is concluded that the litter decomposition rate and RS were highest under periodic saturation and under lower soil moisture conditions, respectively.
    DOI/handle
    http://dx.doi.org/10.2136/sssaj2014.03.0094
    http://hdl.handle.net/10576/4623
    Collections
    • Biological & Environmental Sciences [‎931‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video