• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    β-blockade prevents coronary macro- and microvascular dysfunction induced by a high salt diet and insulin resistance in the Goto–Kakizaki rat

    Thumbnail
    Date
    2021
    Author
    Pearson, James T.
    Thambyah, Hamish P.
    Waddingham, Mark T.
    Inagaki, Tadakatsu
    Sukumaran, Vijayakumar
    Ngo, Jennifer P.
    Ow, Connie p.C.
    Sonobe, Takashi
    Chen, Yi Ching
    Edgley, Amanda J.
    Fujii, Yutaka
    Du, Cheng-Kun
    Zhan, Dong-Yun
    Umetani, Keiji
    Kelly, Darren J.
    Tsuchimochi, Hirotsugu
    Shirai, Mikiyasu
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    A high salt intake exacerbates insulin resistance, evoking hypertension due to systemic perivascular inflammation, oxidative-nitrosative stress and endothelial dysfunction. Angiotensin-converting enzyme inhibitor (ACEi) and angiotensin receptor blockers (ARBs) have been shown to abolish inflammation and redox stress but only partially restore endothelial function in mesenteric vessels. We investigated whether sympatho-adrenal overactivation evokes coronary vascular dysfunction when a high salt intake is combined with insulin resistance in male Goto–Kakizaki (GK) and Wistar rats treated with two different classes of β-blocker or vehicle, utilising synchrotron-based microangiography in vivo. Further, we examined if chronic carvedilol (CAR) treatment preserves nitric oxide (NO)-mediated coronary dilation more than metoprolol (MET). A high salt diet (6% NaCl w/w) exacerbated coronary microvessel endothelial dysfunction and NO-resistance in vehicle-treated GK rats while Wistar rats showed modest impairment. Microvascular dysfunction was associated with elevated expression of myocardial endothelin, inducible NO synthase (NOS) protein and 3-nitrotyrosine (3-NT). Both CAR and MET reduced basal coronary perfusion but restored microvessel endothelium-dependent and -independent dilation indicating a role for sympatho-adrenal overactivation in vehicle-treated rats. While MET treatment reduced myocardial nitrates, only MET treatment completely restored microvessel dilation to dobutamine (DOB) stimulation in the absence of NO and prostanoids (combined inhibition), indicating that MET restored the coronary flow reserve attributable to endothelium-derived hyperpolarisation (EDH). In conclusion, sympatho-adrenal overactivation caused by high salt intake and insulin resistance evoked coronary microvessel endothelial dysfunction and diminished NO sensitivity, which were restored by MET and CAR treatment in spite of ongoing inflammation and oxidative-nitrosative stress presumably caused by uninhibited renin–angiotensin–aldosterone system (RAAS) overactivation.
    DOI/handle
    http://dx.doi.org/10.1042/CS20201441
    http://hdl.handle.net/10576/46994
    Collections
    • Medicine Research [‎1762‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video