• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Role of methylglyoxal in diabetic cardiovascular and kidney diseases: Insights from basic science for application into clinical practice

    Thumbnail
    Date
    2018-01-01
    Author
    Sankaralingam, Sowndramalingam
    Ibrahim, Angham
    Rahman, M. D.Mizanur
    Eid, Ali H.
    Munusamy, Shankar
    Metadata
    Show full item record
    Abstract
    Background: The incidence and prevalence of diabetes mellitus are increasing globally at alarming rates. Cardiovascular and renal complications are the major cause of morbidity and mortality in patients with diabetes. Methylglyoxal (MG)-a highly reactive dicarbonyl compound – is increased in patients with diabetes and has been implicated to play a detrimental role in the etiology of cardiovascular and renal complications. Derived from glucose, MG binds to arginine and lysine residues in proteins, and the resultant end products serve as surrogate markers of MG generation in vivo. Under normal conditions, MG is detoxified by the enzyme glyoxalase 1 (Glo1), using reduced glutathione as a co-factor. Elevated levels of MG is known to cause endothelial and vascular dysfunction, oxidative stress and atherosclerosis; all of which are risk factors for cardiovascular diseases. Moreover, MG has also been shown to cause pathologic structural alterations and impair kidney function. Conversely, MG scavengers (such as N-acetylcysteine, aminoguanidine or metformin) or Nrf2/Glo1 activators (such as trans-resveratrol/hesperetin) are shown to be useful in preventing MG-induced cardiovascular and renal complications in diabetes. However, clinical evidence supporting the MG lowering properties of these agents are limited and hence, need further investigation. Conclusion: Reducing MG levels directly using scavengers or indirectly via activation of Nrf2/Glo1 may serve as a novel and potent therapeutic strategy to counter the deleterious effects of MG in diabetic complications.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85057435277&origin=inward
    DOI/handle
    http://dx.doi.org/10.2174/1381612824666180903141832
    http://hdl.handle.net/10576/47829
    Collections
    • Pharmacy Research [‎1399‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video