• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Medical image analysis

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    التاريخ
    2022
    المؤلف
    Degerli, Aysen
    Yamac, Mehmet
    Ahishali, Mete
    Kiranyaz, Serkan
    Gabbouj, Moncef
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    This chapter presents deep learning methodologies for medical imaging tasks. The chapter starts with echocardiography for early detection of myocardial infarction (MI) or commonly known as heart attack. Early and fundamental signs of MI can be visible as the abnormality in one or several segments of the left ventricle (LV) wall, where a segment may move "abnormally" or "nonuniformly." The primary tool to detect and identify such regional wall motion abnormalities is echocardiography, which is a fast, cost-effective, and lowest risk imaging option. A three-phase approach is introduced, where the entire LV wall is segmented by a deep learning model, and then characteristics of the segmented wall are used to perform early detection of MI robustly and accurately. The second medical imaging task discussed in the chapter is the recognition of coronavirus disease 2019 (COVID-19), which has become a global health concern after it is declared as a pandemic in March 2020. Developing automatic, accurate, and fast algorithms for COVID-19 detection plays a vital role in the prevention of spreading the virus. Deep learning models can provide state-of-the-art performance in many imaging tasks. However, due to data scarcity, these models cannot produce satisfactory results when trained for COVID-19 recognition. To tackle this issue, Convolutional Support Estimator Network (CSEN) is introduced due to its advantage over a scarce-data classification task for robust COVID-19 recognition using chest X-ray images. In order to utilize the CSEN classification scheme, features are extracted from a state-of-the-art deep neural network. Consequently, the introduced network can achieve an elegant performance for COVID-19 recognition.
    DOI/handle
    http://dx.doi.org/10.1016/B978-0-32-385787-1.00025-7
    http://hdl.handle.net/10576/47885
    المجموعات
    • الهندسة الكهربائية [‎2821‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video