• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Medical image analysis

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2022
    Author
    Degerli, Aysen
    Yamac, Mehmet
    Ahishali, Mete
    Kiranyaz, Serkan
    Gabbouj, Moncef
    Metadata
    Show full item record
    Abstract
    This chapter presents deep learning methodologies for medical imaging tasks. The chapter starts with echocardiography for early detection of myocardial infarction (MI) or commonly known as heart attack. Early and fundamental signs of MI can be visible as the abnormality in one or several segments of the left ventricle (LV) wall, where a segment may move "abnormally" or "nonuniformly." The primary tool to detect and identify such regional wall motion abnormalities is echocardiography, which is a fast, cost-effective, and lowest risk imaging option. A three-phase approach is introduced, where the entire LV wall is segmented by a deep learning model, and then characteristics of the segmented wall are used to perform early detection of MI robustly and accurately. The second medical imaging task discussed in the chapter is the recognition of coronavirus disease 2019 (COVID-19), which has become a global health concern after it is declared as a pandemic in March 2020. Developing automatic, accurate, and fast algorithms for COVID-19 detection plays a vital role in the prevention of spreading the virus. Deep learning models can provide state-of-the-art performance in many imaging tasks. However, due to data scarcity, these models cannot produce satisfactory results when trained for COVID-19 recognition. To tackle this issue, Convolutional Support Estimator Network (CSEN) is introduced due to its advantage over a scarce-data classification task for robust COVID-19 recognition using chest X-ray images. In order to utilize the CSEN classification scheme, features are extracted from a state-of-the-art deep neural network. Consequently, the introduced network can achieve an elegant performance for COVID-19 recognition.
    DOI/handle
    http://dx.doi.org/10.1016/B978-0-32-385787-1.00025-7
    http://hdl.handle.net/10576/47885
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video